Tag Archives: XENONnT

XENON at the 2019 Swiss-Austrian Physical Society Meeting

Five members of the University of Zurich group participated at the 2019 Swiss-Austrian Physical Society Meeting in Zurich, Switzerland.

Adam Brown contributed with a poster on the XENONnT upgrades and status and Ricardo Peres on the software for the supernova early warning system:

Giovanni Volta, Michelle Galloway and Chiara Capelli contributed with talks on the general XENON1T results, the ongoing search for dark absorption and the analysis on high energy events respectively. The full talks are linked. Below a key slide from each talk is shown: the spin-independent elastic WIMP-nucleon scattering limit at 90% CL still are the most sensitive limits on WIMP dark matter. The motivation for light dark matter searches is becoming more and more pressing. And our reconstruction of single-site and multiple-site interactions for the neutrinoless double beta decay search significantly improves our capability to contribute to this exciting science channel.

XENON at EPS-HEP2019

XENON was on the agenda at the European Physical Society Conference on High Energy Physics 2019 (EPS-HEP2019), which was held in Ghent, Belgium in the middle of July. The talk, presented by Adam Brown from the University of Zurich group, concentrated on results from XENON1T and also provided an overview of the work which is well underway to build the next generation detector, XENONnT.

Among results shown were our searches for elastic WIMP scattering and the recently published observation of double electron capture in 124Xe. The slides can be downloaded here. While the XENONnT upgrade currently in progress at Gran Sasso features many improvements of the XENON1T detector, Adam summarized four major improvements in one colorful slide.

The XENONnT dual-phase xenon TPC requires two regions with different electric fields to drift, extract, and accelerate the small number of ionization electrons that are created by a possible dark matter interaction with xenon nuclei. These fields will be created with a total of five electrodes that are biased at constant electric potentials from top to the bottom of the TPC. The challenges to build these large electrodes with almost 1.5 meters in diameter with very thin wires include stringent requirements on their optical transparency, wire sagging, field uniformity and high voltage stability.

Such a challenging project is carried out by a collaborative effort of many expertises within the XENON collaboration. The design and production of the electrodes are led by Dr. Carla Macolino and realized by researchers from the Laboratoire de l’Accélérateur Linéaire, Rice University, University of California San Diego, and University of Coimbra, accompanied by further technical design and electric field simulation support from University of Chicago and Freiburg University. A special instrument was designed and built by the University of Münster to measure the tension of every individual wire. Finally, strict cleaning requirement is satisfied from the expertise at MPI for Nuclear Physics and technical support from Nikhef.

Shown are the actual XENONnT electrodes during construction and quality control in above-ground clean room laboratories.

 

On March 8, 2019, Shigetaka Moriyama presented the status of the XENONnT experiment at the international symposium on “Revealing the history of the Universe with underground particle and nuclear research” in Sendai, Japan. The symposium is held by a Japanese research community working on underground experiments and developing low background techniques. Its members are interested in the physics goals of XENONnT as well as its radon reduction technique and will enhance the experiment with Super-Kamiokande’s water Cherenkov technology developed in Kamioka, Japan, for the SK-Gd project. Super-Kamiokande developed this technology to measure the diffuse relic neutrino flux from past supernovae.

At the Sendai meeting, this community is summarizing its achievements over last five years and aims to secure new funding for the next five years by expanding its activity through internationalization and the inclusion of new physics topics such as history of stars, galaxies, and the origin of the heavy elements in the Universe.

Its HP is here and the slides are available here.

Outline the XENONnT Computing Scheme at the 2nd Rucio Community Workshop in Oslo

Oslo welcomed all 66 participants of the second Rucio Community Workshop with pleasant weather and a venue which offered an astonishing view about the capital of Norway.
The opensource and contribution model of the Rucio data management tool captures more and more attention from numerous fields. Therefore, 21 communities reported this year about the implementation of Rucio in their current data workflows, discussed with the Rucio developing team possible improvements and chatted among each other during the coffee breaks to learn from others experiences. Among the various communities were presentations given by the DUNE experiment, Belle-2 and LSST. The XENON Dark Matter Collaboration presented the computing scheme of the upcoming XENONnT experiment. Two keynote talks from Richard Hughes-Jones (University of Maryland) and Gundmund Høst (NeIC) highlighted the concepts of the upcoming generation of academic networks and the Nordic e-Infrastructure Collaboration.

After the successful XENON1T stage with two major science runs, a world-leading limit for spin-indepenent Dark Matter interactions with nucleons and further publications, the XENON1T experiment stopped data taking in December 2018. We aim for two major updates for the successor stage of XENONnT: a larger time projection chamber (TPC) which holds ~8,000 kg of liquid xenon with 496 PMTs for signal readout and an additional neutron veto detector based on Gadolinium doped water in our water tank. That requires upgrades in our current data management and processing scheme, which was presented last year at the first Rucio Community Workshop. Fundamental change is the new data processor STRAX which allows us much faster data processing. Based on the recorded raw data, the final data product will be available at distinct intermediate processing stages which depend on each other. Therefore, we stop using our “classical” data scheme of raw data, processed data and minitrees, and instead aim for a more flexible data structure. Nevertheless, all stages of the data are distributed with Rucio to connected grid computing facilities. STRAX will be able to process data from the TPC, the MuonVeto and the NeutronVeto together to allow coincident analysis.

The data flow of the XENONnT experiment

The data flow of the XENONnT experiment. A first set data is processed already at the LNGS. All data kinds are distributed with Rucio to the analysts.

Reprocessing campaigns are planed ahead with HTCondor and DAGMan jobs at EGI and OSG similar to the setup of XENON1T. Due to the faster data processor, it becomes necessary to outline a well-established read and write routine with Rucio to guarantee quick data access.
Another major update in the XENONnT computing scheme becomes the tape backup location. Because of the increased number of disks and tape allocations in the Rucio catalogue, we will abandon the Rucio independent tape backup in Stockholm and use dedicated Rucio storage elements for storing the raw data. The XENON1T experiment collected ~780 TB of (raw) data during its life time which are all managed by Rucio. The XENON Collaboration is looking forward to continuing this success story with XENONnT

A Larger Cleanroom for a Larger XENONnT

Assembly of XENONnT Cleanroom at LNGS. Foto: Roberto Corrieri/XENON

The upcoming XENONnT detector, the next phase in our dark matter program, will have a dark matter target about three times larger than that of XENON1T. This means that all dimensions of the instruments are about 50% larger and thus require more space for the cleaning of the detector components and for detector assembly. For this reason, the class ISO-5/6 XENON cleanroom is currently being moved to a new above-ground space at LNGS, where it is re-built with a 50% increased footprint and a partially increased height.

The last action seen by the “old” cleanroom before its decommissioning were very successful tests of the TPC electrodes for XENONnT.

Latest XENON1T results at ICHEP2018 in Seoul

The XXXIX International Conference on High Energy Physics (ICHEP2018) was taking place from July 4 – 11, 2018 in Seoul, Korea. After a warm welcome in this modern and traditional metropolis with over 10 million citizens, I was invited to present the recent results from XENON1T in a Dark Matter parallel session.

Here is one slide of my talk visualizing the spatial distribution of the unblinded and de-salted events.

Spatial distribution of unblinded and de-salted data.

The left plot shows the X- and Y- distribution, while the right plot indicates the radius R versus depth Z for the same set of data. The enlarged fiducial volume of 1.3 tons with respect to the first result, is highlighted by the pink line. For the analysis, a core volume (green line) was defined to distinguish WIMP-like events over neutron-like background events. The different events are visualized by pie charts, where the color code resembles the relative probability from each background component assigned by the best-fit. The larger a pie is, the more “WIMPy” it is. As you can see, only a few “WIMPy” events were found that are comparable to the background model expectations. From this, we derived the most stringent limits on spin-independent WIMP-nucleon cross sections.

At the end of my talk,  I also reported on the status of XENONnT, which will feature a 10x higher sensitivity than XENON1T. One main task is radon mitigation, one of the dominant backgrounds, which is visualized in this slide.

Radon mitigation for XENONnT

In a first step, a careful material selection needs to be made to avoid radon emanation from the start. Then, a new high throughput radon distillation column is under development to further reduce the radon contribution. Additionally, a new custom-made radon-free magnetically-coupled piston pump was built and installed at XENON1T in June 2018. With that, the radon budget in XENON1T was reduced by almost half (45%), which is an important step for the future XENONnT experiment.

The full talk is publicly available here.

XENON1T at the first Rucio Community Workshop at CERN

Everything scales up! Even the amount of acquired raw data in XENON1T. To handle data transfers easily, the XENON collaboration decided to let the Rucio Scientific Data Managment software do all the work. Rucio is developed at CERN and meant to manage scientific data. Data transfers, book keeping, easy data access and safety against data loss are its big advantage.

XENON1T is taking about one Terabyte of raw data per day. The detector is located at the Laboratori Nazionali del Gran Sass (LNGS) in Italy and the data need to be shipped out to dedicated computing centers for data reduction and analysis.

Individual Rucio clients access dedicated GRID disk space on world wide distributed computer facilities. Everything is controlled by a Rucio server which keeps track on storage locations, data sizes and transfers within the computer infrastructure. Rucio is developed in Python and its distribution becomes very simple.

The First Rucio Community Workshop was held at CERN on 1st and 2nd of March. Since Rucio was developed for the ATLAS collaboration, other experiments like XENON and AMS started to use Rucio a while ago. Nowadays, more collaborations such as EISCAT 3D, LIGO or NA62 (just to mention a few) became interested. The workshop allowed to meet all each other: developers and users discussed several use cases and how to improve Rucio for individual collaborations.

The XENON1T data distribution from https://indico.cern.ch/event/676472/contributions/2905755/

The XENON1T data distribution framework

We presented our integration of Rucio in the existing data handling framework. XENON1T raw data are distributed to five computing centers in Europe and the US. Each one is connected to the European Grid Interface (EGI) or the Open Science Grid (OSG) for data reduction (“processing”). Raw data are processed on the GRID and the reduced data sets are provided for the analysts on Research Computing Center (RCC) in Chicago. Beyond this, the XENON collaboration will continue to use Rucio for the upcoming XENONnT upgrade.

Towards a Neutron Veto System for the XENONnT Upgrade

Once a year the Spring-Meeting of the German Physics Society (DPG “Deutsche Physikalische Gesellschafft”) takes place. This year I had the opportunity to talk about the planned neutron Veto for XENONnT in Würzburg (19.-23.3.2018).

In order to maximize the fiducial volume, we want to veto nuclear recoils. Therefore we are working on a neutron veto system based on Gadolinium loaded liquid scintillator. The plan is to use acrylic boxes, which can be filled with liquid scintillator before being placed around the TPC cryostat.

Building on the experience of DOUBLE CHOOZ, we developed a first LAB-based liquid scintillator doped with 0.1 % Gadolinium and two wavelength shifters. Three measurements were performed to test the optical properties, transmission, emission and relative light yield. From the transmission measurement, we learned that the attenuation length of the scintillator at a wavelength of 430nm is 7.1m. The emission measurement shows the shifting due to the wavelength shifters to the visible wavelength. And with the relative light yield measurement we can compare an unloaded scintillator sample with the Gd-loaded sample. The light yield for the loaded scintillator decreases to 74% of the unloaded sample.

Our next steps will be to find a supplier who can provide us with a large and pure amount of the Gadolinium-Complex and to build a setup for neutron tagging measurements.