Tag Archives: XENON1T

Modeling and statistical analysis of the XENON1T data

On May 31st 2018, XENON1T released the result of a search for dark matter interacting with xenon atoms using an exposure of 1 tonne-year. Papers presenting the scientific results are written to be brief, and communicate the most important information to the scientific community. Therefore, many details of the instrument, reconstruction of events and analysis work by the entire collaboration must be left out of the science papers. XENON1T has previously published a paper focusing on the operation of the detector itself. A new paper by XENON1T now goes into the details of the analysis of the XENON1T data, and another one, on the event reconstruction and calibration, is being prepared.

XENON1T detects the scintillation light and ionization electrons that energy depositions in the two tonne liquid xenon target produce. In addition to WIMPs, different background sources can produce an S1+S2 signal. The expected S1,S2 distribution may change depending on whether the energy deposition happens by a recoil on an electron of the xenon atom or the nucleus. This is one of the main methods XENON uses to discriminate against backgrounds, since WIMPs, which scatter on the xenon nucleus, have a mean S2 lower than 99.7% of the dominant background component, which is made up of scatters on electrons.

Modelling how an electronic or nuclear recoil will look like in the detector is crucial both to know the shape of a WIMP signal, and to model the backgrounds well. XENON1T uses a comprehensive fit to multiple calibration sources to constrain the distributions of backgrounds and signals in the analysis space; S1, S2 and the radius from the center axis of the detector.
Some background components are harder to model directly, and are estimated by using sidebands or other data samples. In the XENON1T analysis, coincidences between unrelated, lone S1 and S2 events were modeled this way, in addition to the surface background– events occurring close to or at the detector wall.

Models of various backgrounds and the expected WIMP signal in two of the parameters extracted from each even, scintillation S1 and ionization S2 signals.


The models of each background and the signal, for two separate science runs, are put together in a likelihood, which is a mathematical function of the WIMP signal strength as well as nuisance parameters. These are unknowns that could change the analysis, such as the true expectation value for each background component. The likelihood also contains multiple terms representing measurements of nuisance parameter, which constrain them when the likelihood is fitted to the data collected by XENON1T.

The value of the likelihood evaluated at a specific signal strength has a random distribution which is estimated using simulated realizations of the experimental outcome. The final statistical limits are computed by comparing the likelihood computed on the actual data with the distributions found from the simulations: 

Likelihood as function of the signal strength (measured by the WIMP-nucleon cross-section)
The gray area shows likelihoods that corresponds to a 90% exclusion. The confidence interval– the region of signal strength compatible with the observed data– is the region where the likelihood lies below the gray band.


The models and tools used in the XENON1T spin-independent analysis are also used to explore alternative models of dark matter, such as spin-independent interactions and scatterings between WIMPs and pions, with more to come!

 

Constraining the spin-dependent WIMP-nucleon interaction with XENON1T

Since we don’t know how dark matter interacts with more familiar particles, we have to break up our search for weakly interacting massive particles (WIMPs) in terms of their possible interactions with xenon nuclei. While many complex interactions are possible, we generally start with two simple cases: WIMP-nucleus interactions that don’t depend on the nuclear spin, and those that do. XENON1T set a world-leading constraint on the former, “spin-independent” interaction in 2018. Today, we released our first results constraining the latter, “spin-dependent” interaction. The results are shown in the following figure:

The spin-dependent WIMP-nucleon interaction contains a range of possible cases, so experiments typically consider two extreme ones: the case where WIMPs only scatter off protons, and the case where they only scatter off neutrons. Most of the spin in xenon is carried by neutrons, so xenon experiments are better at constraining the neutron-only case. These results set the most stringent limit on this case, using the same data and procedure as the spin-independent result. We also tried out a new method of combining our constraints with complementary searches at particle accelerators, following the example of PICO-60. An open-access pre-print version of the paper is available on the arXiv.

The first limits on spin-independent WIMP-pion interactions

XENON1T was built to observe the recoil of xenon-atoms, which may be caused by the interaction of a Weakly Interacting Massive Particle (WIMP) as it passes through the detector. A recoiling xenon atom produces scintillation light and ionization that XENON1T detects as an S1 and S2 signal, which carry information of the recoil type, energy and position in the detector. The first results of the XENON1T were published on the spin-independent WIMP-nucleon interaction, which is expected to dominate the WIMP scattering rate. However, models of WIMPs exist where this contribution would be suppressed or vanish. XENON has therefore performed searches for alternative WIMP-recoil spectra, such as the one expected if the scattering depends on the nucleon spins.

A careful accounting of all the possible WIMP-nucleon interactions showed that WIMPs can also interact with pions— subatomic particles that contribute to the strong force that binds atoms together. The figure illustrates a WIMP (χ) scattering via a mediator line on a pion (π) exchanged between a proton and a neutron in the xenon nucleus. The xenon atom recoils from the interaction, which can be observed with our detector. Similarly to the spin-independent recoil, the wimp-pion interaction happens in a way where the WIMP scatters coherently, off the entire xenon atom together. 

A WIMP scattering on a pion exchanged within the xenon nucleus

The analysis was performed with the same tools as the main XENON1T spin-independent WIMP search, and 1 tonne-years of data. No significant evidence for a signal was observed, so we set the first limits on the spin-independent WIMP-pion interaction strength. An open access pre-print of the paper can be found on the arxiv.

XENON1T at the annual meeting of the Swiss Physical Society, 2018

Two members of the University of Zurich group gave talks on XENON1T at the annual meeting of the Swiss Physical Society in Lausanne, Switzerland. Chiara Capelli presented the latest news from the experiment and in particular the recently presented limit on spin-independent WIMP-nucleon cross-section, while Adam Brown spoke about the ongoing work searching for the inelastic scattering of WIMPs.

One of the key slides from Chiara’s talk is below. In the top-right you can see the WIMP-search data pre-unblinding, and in the bottom-right the efficiency for detecting nuclear recoils which happen in our fiducial volume. In the full talk, which is available here, she also presented the final limit and then gave a update on the preparations for the detector upgrade to XENONnT which are ongoing at the University of Zurich.

Adam’s talk focussed instead on an alternative possibility of searching for WIMPs via their inelastic scattering off xenon nuclei. During the interaction the nucleus is excited, and so the usual nuclear recoil signal would be observed in coincidence with the 39.6 keV gamma ray from the de-excitation of the nucleus. One of the attractions of this search channel, which is however less sensitive than elastic scattering, is that it distinguishes between spin-dependent and spin-independent WIMP interactions: a spin-dependent interaction is needed to change the nuclear spin state during its excitation. Again, the full talk is available online here.

XENON1T Result covered by CERN Ccourier

XENON1T results from a 1 ton-year dark matter exposure.

Our latest dark matter results from XENON1T, the most sensitive search for WIMPs with an unprecedented liquid xenon exposure of 1 ton-years and a world-record low background level is featured in the July/August 2018 edition of the CERN Courier, the International Journal of High-Energy Physics. Read the full article here.

 

Latest XENON1T results at ICHEP2018 in Seoul

The XXXIX International Conference on High Energy Physics (ICHEP2018) was taking place from July 4 – 11, 2018 in Seoul, Korea. After a warm welcome in this modern and traditional metropolis with over 10 million citizens, I was invited to present the recent results from XENON1T in a Dark Matter parallel session.

Here is one slide of my talk visualizing the spatial distribution of the unblinded and de-salted events.

Spatial distribution of unblinded and de-salted data.

The left plot shows the X- and Y- distribution, while the right plot indicates the radius R versus depth Z for the same set of data. The enlarged fiducial volume of 1.3 tons with respect to the first result, is highlighted by the pink line. For the analysis, a core volume (green line) was defined to distinguish WIMP-like events over neutron-like background events. The different events are visualized by pie charts, where the color code resembles the relative probability from each background component assigned by the best-fit. The larger a pie is, the more “WIMPy” it is. As you can see, only a few “WIMPy” events were found that are comparable to the background model expectations. From this, we derived the most stringent limits on spin-independent WIMP-nucleon cross sections.

At the end of my talk,  I also reported on the status of XENONnT, which will feature a 10x higher sensitivity than XENON1T. One main task is radon mitigation, one of the dominant backgrounds, which is visualized in this slide.

Radon mitigation for XENONnT

In a first step, a careful material selection needs to be made to avoid radon emanation from the start. Then, a new high throughput radon distillation column is under development to further reduce the radon contribution. Additionally, a new custom-made radon-free magnetically-coupled piston pump was built and installed at XENON1T in June 2018. With that, the radon budget in XENON1T was reduced by almost half (45%), which is an important step for the future XENONnT experiment.

The full talk is publicly available here.

XENON1T probes deeper into Dark Matter WIMPs, with 1300 kg of cold Xe atoms

Results from XENON1T, the world’s largest and most sensitive detector dedicated to a direct search for Dark Matter in the form of Weakly Interacting Massive Particles (WIMPs), are reported today (Monday, 28th May) by the spokesperson, Prof. Elena Aprile of Columbia University, in a seminar at the hosting laboratory, the INFN Laboratori Nazionali del Gran Sasso (LNGS), in Italy. The international collaboration of more than 165 researchers from 27 institutions, has successfully operated XENON1T, collecting an unprecedentedly large exposure of about 1 tonne x year with a 3D imaging liquid xenon time projection chamber. The data are consistent with the expectation from background, and place the most stringent limit on spin-independent interactions of WIMPs with ordinary matter for a WIMP mass higher than 6 GeV/c². The sensitivity achieved with XENON1T is almost four orders of magnitude better than that of XENON10, the first detector of the XENON Dark Matter project, which has been hosted at LNGS since 2005. Steadily increasing the fiducial target mass from the initial 5 kg to the current 1300 kg, while simultaneously decreasing the background rate by a factor 5000, the XENON collaboration has continued to be at the forefront of Dark Matter direct detection, probing deeper into the WIMP parameter space.

Shown are the limits on WIMP interactions, derived from one year of XENON1T data. The inset compares our limit and sensitivity with the limit and sensitivities of previous experiments.

WIMPs are a class of Dark Matter candidates which are being frantically searched with experiments at the Large Hadron Collider, in space, and on Earth. Even though about a billion WIMPs are expected to cross a surface of one square meter per second on Earth, they are extremely difficult to detect. Results from XENON1T show that WIMPs, if they indeed comprise the Dark Matter in our galaxy, will result in a rare signal, so rare that even the largest detector built so far can not see it directly. XENON1T is a cylindrical detector of approximately one meter height and diameter, filled with liquid xenon at -95°C, with a density three times that of water. In XENON1T, the signature of a WIMP interaction with xenon atoms is a tiny flash of scintillation light and a handful of ionization electrons, which themselves are turned into flashes of light. Both light signals are simultaneously recorded with ultra-sensitive photodetectors, giving the energy and 3D spatial information on an event-by-event basis.

In developing this unique type of detector to search for a rare WIMP signal, many challenges had to be overcome; first and foremost the reduction of the overwhelmingly large background from many sources, from radioactivity to cosmic rays. Today, XENON1T is the largest Dark Matter experiment with the lowest background ever measured, counting a mere 630 events in one year and one tonne of xenon in the energy region of interest for a WIMP search. The search results, submitted to Physical Review Letters, are based on 1300 kg out of the total 2000 kg active xenon target and 279 days of data, making it the first WIMP search with a noble liquid target exposure of 1.0 tonne x year. Only two background events were expected in the innermost, cleanest region of the detector, but none were detected, setting the most stringent limit on WIMPs with masses above 6 GeV/c² to date. XENON1T continues to acquire high quality data and the search will continue until it will be upgraded with a larger mass detector, being developed by the collaboration. With another factor of four increase in fiducial target mass, and ten times less background rate, XENONnT will be ready in 2019 for a new exploration of particle Dark Matter at a level of sensitivity nobody imagined when the project started in 2002.

XENON1T at the first Rucio Community Workshop at CERN

Everything scales up! Even the amount of acquired raw data in XENON1T. To handle data transfers easily, the XENON collaboration decided to let the Rucio Scientific Data Managment software do all the work. Rucio is developed at CERN and meant to manage scientific data. Data transfers, book keeping, easy data access and safety against data loss are its big advantage.

XENON1T is taking about one Terabyte of raw data per day. The detector is located at the Laboratori Nazionali del Gran Sass (LNGS) in Italy and the data need to be shipped out to dedicated computing centers for data reduction and analysis.

Individual Rucio clients access dedicated GRID disk space on world wide distributed computer facilities. Everything is controlled by a Rucio server which keeps track on storage locations, data sizes and transfers within the computer infrastructure. Rucio is developed in Python and its distribution becomes very simple.

The First Rucio Community Workshop was held at CERN on 1st and 2nd of March. Since Rucio was developed for the ATLAS collaboration, other experiments like XENON and AMS started to use Rucio a while ago. Nowadays, more collaborations such as EISCAT 3D, LIGO or NA62 (just to mention a few) became interested. The workshop allowed to meet all each other: developers and users discussed several use cases and how to improve Rucio for individual collaborations.

The XENON1T data distribution from https://indico.cern.ch/event/676472/contributions/2905755/

The XENON1T data distribution framework

We presented our integration of Rucio in the existing data handling framework. XENON1T raw data are distributed to five computing centers in Europe and the US. Each one is connected to the European Grid Interface (EGI) or the Open Science Grid (OSG) for data reduction (“processing”). Raw data are processed on the GRID and the reduced data sets are provided for the analysts on Research Computing Center (RCC) in Chicago. Beyond this, the XENON collaboration will continue to use Rucio for the upcoming XENONnT upgrade.

XENON1T presented at the german physics society spring meeting

The spring meeting of the german physics society took place from 19th to 23rd March in Würzburg, a very historic city with its baroque Residence from 1744 that belongs to the UNESCO world heritage. The meeting is a yearly get-together of physicists working in german institutions and provides the opportunity to exchange and learn about new projects and results within the particle physics community. The conference program can be found here.

During my presentation of the XENON1T experiment, I tried to share my excitement about the upcoming results from the new data set of our second science run (SR1) that was acquired during the course of last year within 247 live days. Here is one slide showing the collected data in the S2 vs. S1 space on the right:

For comparison, the data from the first science run (SR0) that was ended by an earthquake is shown in the left figure. Already with SR0 which was a factor of 8 shorter than SR1 we could set the most stringent limit on spin-independent WIMP-nucleon cross-sections and prove a detector background level that makes XENON1T the most sensitive experiment worldwide. Hence, we are eager to unblind the signal region (marked by the blue band) in the new data set after some final checks of the analysis and find out if we actually measured a few WIMP events. We would be able to see a 3 sigma excess of a signal with a cross section just below the upper limit of SR0 with more than 50% probability. So maybe the discovery of dark matter is just around the corner?

 

XENON1T Calibrations Talk at APS April Meeting

At the 2018 April Meeting of APS last weekend, I presented a brief summary of how and why we calibrate the XENON1T detector. The April Meeting is one of the largest American physics conferences and covers a broad range of research, from nuclear and particle physics to gravitation and cosmology. Below you can see one of the slides that I presented:

This shows how we use data from calibrations to understand every piece of physics in our detector, from a particle entering and hitting a xenon atom to the measurement of the light and charge produced by this interaction. Combining the many different calibrations we do, we develop a complete model of XENON1T which is then used in a statistics framework to determine whether the background data we’ve taken contains WIMPs. Stay tuned as it won’t be too long before we can release those results as well!