Tag Archives: neutron veto

On March 8, 2019, Shigetaka Moriyama presented the status of the XENONnT experiment at the international symposium on “Revealing the history of the Universe with underground particle and nuclear research” in Sendai, Japan. The symposium is held by a Japanese research community working on underground experiments and developing low background techniques. Its members are interested in the physics goals of XENONnT as well as its radon reduction technique and will enhance the experiment with Super-Kamiokande’s water Cherenkov technology developed in Kamioka, Japan, for the SK-Gd project. Super-Kamiokande developed this technology to measure the diffuse relic neutrino flux from past supernovae.

At the Sendai meeting, this community is summarizing its achievements over last five years and aims to secure new funding for the next five years by expanding its activity through internationalization and the inclusion of new physics topics such as history of stars, galaxies, and the origin of the heavy elements in the Universe.

Its HP is here and the slides are available here.

Towards a Neutron Veto System for the XENONnT Upgrade

Once a year the Spring-Meeting of the German Physics Society (DPG “Deutsche Physikalische Gesellschafft”) takes place. This year I had the opportunity to talk about the planned neutron Veto for XENONnT in Würzburg (19.-23.3.2018).

In order to maximize the fiducial volume, we want to veto nuclear recoils. Therefore we are working on a neutron veto system based on Gadolinium loaded liquid scintillator. The plan is to use acrylic boxes, which can be filled with liquid scintillator before being placed around the TPC cryostat.

Building on the experience of DOUBLE CHOOZ, we developed a first LAB-based liquid scintillator doped with 0.1 % Gadolinium and two wavelength shifters. Three measurements were performed to test the optical properties, transmission, emission and relative light yield. From the transmission measurement, we learned that the attenuation length of the scintillator at a wavelength of 430nm is 7.1m. The emission measurement shows the shifting due to the wavelength shifters to the visible wavelength. And with the relative light yield measurement we can compare an unloaded scintillator sample with the Gd-loaded sample. The light yield for the loaded scintillator decreases to 74% of the unloaded sample.

Our next steps will be to find a supplier who can provide us with a large and pure amount of the Gadolinium-Complex and to build a setup for neutron tagging measurements.