Tag Archives: instrumentation

Distillation campaign for XENONnT finished

The up-coming XENONnT experiment utilizes a total of 8.3 tonnes of xenon to search for the ever elusive dark matter particles. In addition to the existing 3.3 tonnes of ultra-pure xenon from XENON1T, another 5 tonnes of xenon were purchased by the XENON collaboration. 

Before the new gas can be used for XENONnT, it needs to be purified. Besides oxygen, nitrogen and water that potentially absorb the light and charge signals in the detector, the radioactive noble gas Kr-85 within the xenon needs to be removed. Kr-85 is a man-made isotope created in nuclear bomb testing and nuclear fuel reprocessing. It makes up a fraction of 10-11 of the natural krypton (Kr-nat) abundance.

The commercially available xenon arrives with a Kr-nat in xenon concentration on the order of 10-6 (ppm, parts per million) to 10-9  (ppb, parts per billion) and needs to be purified down to a concentration of 0.1 x 10-12 (ppt, parts per trillion). To put this in relation: When purchased, an Olympic swimming pool filled with liquid xenon contains a 10 liter bucket of krypton. After purification, 200 Olympic swimming pools filled with liquid xenon contain together just one single droplet of krypton.

The purest xenon on Earth can be produced with the help of our Krypton Distillation Column located underground in the service building of XENON1T/nT as seen in the picture below. The purification method is based on the separation due to the different boiling points of xenon and krypton. While xenon is in its liquid form at -100°C, krypton, as the lighter atom, prefers to stay in its gaseous form. Like that, krypton is enriched at the top of our distillation tower from where it is removed and stored in a bottle as so-called “offgas”. The purified xenon can exit the distillation system at the bottom.

The picture shows the service building of XENON1T/nT. Bottles with new xenon, containing tiny trace amounts of the radioactive noble gas Kr-85, were connected to the “Bottle rack” (Blue-red-dashed line). The xenon is guided into the “Distillation column” to separate krypton from xenon. At the top, krypton-enriched xenon is extracted as “offgas” (red line), while at the bottom, the purified xenon is taken out (Blue line). Purified xenon is either stored inside “ReStoX-I” (Left side, blue line), the storage system of XENON1T, or in “ReStoX-II” (Right side, blue line), a newly installed storage system for XENONnT.

In total, over 100 bottles of freshly delivered xenon were installed in two bottle batches at the “Bottle rack”. Here, xenon samples from each batch were measured with a connected residual gas analyzer (RGA) system. Xenon from one of the bottle batches was continuously filled to the distillation system. Purified xenon was stored  either to the Recovery and Storage for XENON1T (ReStoX-I) (left side of the picture) or to the ReStoX-II system (right side of picture), a newly installed subsystem for XENONnT. ReStoX-II is a system designed to rapidly recover and safely store up to 10 tonnes of xenon, that will serve as an fast recovery system during operation of the XENONnT experiment as well as xenon storage previous to the start of the experiment.

The full distillation campaign was split into three phases starting from April 2019 and was finished in July 2019. Xenon samples were extracted to measure the purified xenon purity at MPIK Heidelberg with a rare gas mass spectrometer

As always in our collaboration, this operation too was an interplay between different groups: The bottle rack was installed by MPIK Heidelberg, the Distillation Column was operated by WWU Münster, and the ReStoX-I and -II systems were built and monitored by Columbia University in New York and Subatech-CNRS. The existing slowcontrol system was updated for the distillation campaigns by the Weizmann Institute of Science. Furthermore, local support was given by the group of INFN. Finally, to exchange bottles and to monitor the system 24/7, shifters from all over the collaboration supported the core distillation team.

The XENON1T Data Acquisition System

Featuring several kilometers of cables, dozens of analog electronics modules, crates of purpose-built specialty computers, and backed by a small server farm, the XENON1T data acquisition system (DAQ) was designed to put our data onto disks. The XENON Collaboration recently published a technical paper on our DAQ in JINST, of course also available on arXiv.

The XENON1T detector measures light, which creates analog electrical signals in 248 independent photo-sensors. The DAQ is responsible for converting these analog signals to a digital, storage-ready format, deciding what types of aggregate signal indicate the presence of a physical interaction in the detector, and recording all the interesting data onto disk for later storage and analysis.

A photo of the XENON1T DAQ room, deep underground at the Gran Sasso lab. Pictured left to right: the DAQ server rack, (red) digitizers (amplifiers facing backwards), cathode high voltage supply, muon veto DAQ, slow control server rack.

There are a couple novel aspects of this system. The first is that the data is streamed constantly from the readout electronics onto short-term storage, recording all signals above a single photo-electron with high (>93%) efficiency. This is different from a conventional data acquisition system, which usually would require certain hardware conditions to be met to induce acquisition,  also called a trigger. We defer our trigger to the software stage, giving us a very low energy threshold.

The software trigger itself was implemented as a database query, which is another novel aspect of the system. Pre-trigger data was stored in a MongoDB NoSQL database and the trigger logic scanned the database looking for signals consistent with S1’s (light) and S2’s (charge). If the algorithm found a matching signal, it would retrieve all the nearby data from the database and write it to storage. Because of the speed of NoSQL databases, this worked the same in both dark matter search mode, where we record just a few counts per second, and calibration modes, where we could record hundreds of counts per second.

To complete the high-tech upgrade of our system, we also ran the user interface as a web service. This means the system could be controlled from laptops, smartphones, or tablets anywhere with a 4G connection, contributing to the high uptime of the detector.

The DAQ is currently being updated to double its capacity to read out the XENONnT detector, so stay tuned.