Tag Archives: background

XENON1T, the most sensitive detector on Earth searching for WIMP dark matter, releases its first result

[Press Release – for immediate release. Preprint is on the arxiv]

The best result on dark matter so far! … and we just got started!”.

This is how scientists behind XENON1T, now the most sensitive dark matter experiment world-wide, hosted in the INFN Laboratori Nazionali del Gran Sasso, Italy, commented on their first result from a short 30-day run presented today to the scientific community.

XENON1T at LNGS

XENON1T installation in the underground hall of Laboratori Nazionali del Gran Sasso. The three story building on the right houses various auxiliary systems. The cryostat containing the LXeTPC is located inside the large water tank on th left, next to the building. (Photo by Roberto Corrieri and Patrick De Perio)

Dark matter is one of the basic constituents of the Universe, five times more abundant than ordinary matter. Several astronomical measurements have corroborated the existence of dark matter, leading to a world-wide effort to observe directly dark matter particle interactions with ordinary matter in extremely sensitive detectors, which would confirm its existence and shed light on its properties. However, these interactions are so feeble that they have escaped direct detection up to this point, forcing scientists to build detectors that are more and more sensitive. The XENON Collaboration, that with the XENON100 detector led the field for years in the past, is now back on the frontline with the XENON1T experiment. The result from a first short 30-day run shows that this detector has a new record low radioactivity level, many orders of magnitude below surrounding materials on Earth. With a total mass of about 3200kg, XENON1T is at the same time the largest detector of this type ever built. The combination of significantly increased size with much lower background implies an excellent dark matter discovery potential in the years to come.

The XENON1T TPC

Scientists assembling the XENON1T time projection chamber. (Photo by Enrico Sacchetti)

The XENON Collaboration consists of 135 researchers from the US, Germany, Italy, Switzerland, Portugal, France, the Netherlands, Israel, Sweden and the United Arab Emirates. The latest detector of the XENON family has been in science operation at the LNGS underground laboratory since autumn 2016. The only things you see when visiting the underground experimental site now are a gigantic cylindrical metal tank, filled with ultra-pure water to shield the detector at his center, and a three-story-tall, transparent building crowded with equipment to keep the detector running, with physicists from all over the world. The XENON1T central detector, a so-called Liquid Xenon Time Projection Chamber (LXeTPC), is not visible. It sits within a cryostat in the middle of the water tank, fully submersed, in order to shield it as much as possible from natural radioactivity in the cavern. The cryostat allows keeping the xenon at a temperature of -95°C without freezing the surrounding water. The mountain above the laboratory further shields the detector, preventing it to be perturbed by cosmic rays. But shielding from the outer world is not enough since all materials on Earth contain tiny traces of natural radioactivity. Thus extreme care was taken to find, select and process the materials making up the detector to achieve the lowest possible radioactive content. Laura Baudis, professor at the University of Zürich and professor Manfred Lindner from the Max-Planck-Institute for Nuclear Physics in Heidelberg emphasize that this allowed XENON1T to achieve record “silence”, which is necessary to listen with a larger detector much better for the very weak voice of dark matter.

XENON1T first results limit

The spin-independent WIMP-nucleon cross section
limits as a function of WIMP mass at 90% confidence
level (black) for this run of XENON1T. In green and yellow
are the 1- and 2σ sensitivity bands. Results from LUX
(red), PandaX-II (brown), and XENON100 (gray)
are shown for reference.

A particle interaction in liquid xenon leads to tiny flashes of light. This is what the XENON scientists are recording and studying to infer the position and the energy of the interacting particle and whether it might be dark matter or not. The spatial information allows to select interactions occurring in the central 1 ton core of the detector. The surrounding xenon further shields the core xenon target from all materials which already have tiny surviving radioactive contaminants. Despite the shortness of the 30-day science run the sensitivity of XENON1T has already overcome that of any other experiment in the field, probing un-explored dark matter territory.  “WIMPs did not show up in this first search with XENON1T, but we also did not expect them so soon!” says Elena Aprile, Professor at Columbia University and spokesperson of the project. “The best news is that the experiment continues to accumulate excellent data which will allow us to test quite soon the WIMP hypothesis in a region of mass and cross-section with normal atoms as never before. A new phase in the race to detect dark matter with ultra-low background massive detectors on Earth has just began with XENON1T. We are proud to be at the forefront of the race with this amazing detector, the first of its kind.”

As always, feel free to contact the XENON collaboration at contact@xenon1t.org.

Material radioassay and selection for XENON1T

To attain the high sensitivity needed to detect a dark matter particle with a xenon time-projection chamber, all other sources of particle interactions need to be eliminated or minimized. These interactions are classified as background events. Radiogenic backgrounds, in particular, come from radioactive isotopes within the detector materials that decay and lead to alpha, beta, or gamma emissions. Neutrons from spontaneous fission of heavy isotopes or from secondary reactions within the detector materials also contribute to the radiogenic background and can mimic a dark matter signal.

To minimize the radiogenic background, the goal of the XENON1T radioassay program is to measure the radioactivity of all materials that are needed to build the detector and to select only the most radiopure materials for the final construction. To do this, we use mass spectrometry techniques and high-purity germanium spectrometers that are capable of measuring radioactivity at the level of 10-6 decays per second in a kilogram of material (Bq/kg). As comparison, a typical banana has an activity of ~102 Bq/kg!

Because natural radioactivity is present in the soil, the water, and in the air, it is also present in the XENON detector materials. The Figure shows a measurement obtained with a germanium spectrometer of the gamma rays emitted from a sample of photomultiplier tubes. The background (purple spectrum) is subtracted from the sample (pink spectrum) in order to quantify the expected activity from a XENON1T component or material sample.

A high-purity germanium spectrometer measurement of gamma rays emitted from a sample of XENON1T photosensors. Some prominent isotopes from different sources are labeled: primordial uranium and thorium decay chains (green), potassium (red), man-made (orange) and cosmogenic (orange) isotopes.

The most common radioactive isotopes present in the Earth are primordial uranium and thorium, each of which decays into a series of other radioactive isotopes (marked in green in the Figure). Potassium (red) is also a common, primordial isotope that is found in soil, and subsequently in food and in your body. Other isotopes that are found in detector materials come from interactions with cosmic rays (yellow) or from man-made activities (blue), i.e. industrial or medical use, nuclear power plant emissions, nuclear accidents, and military testing.

The measured activities of each material selected for detector construction are used in simulations of XENON1T to determine the expected background. This allows for a prediction of the attainable sensitivity of the detector to dark matter interactions. The radioassay measurement results from over 100 material samples are presented in our new paper “Material radioassay and selection for the XENON1T dark matter experiment”.

XeSAT2017: Online krypton and radon removal for the XENON1T experiment

This talk by Michael Murra (slides) was presented at the XeSAT2017 conference in Khon Kaen, Thailand, from 3. – 7. April 2017.

The  main background for the XENON1T experiment are the intrinsic contaminants krypton and radon in the xenon gas. Instead of purifying the xenon once before starting the science run we were able to operate our distillation column in a closed loop with the XENON1T detector system running during its commissioning phase. This resulted into reducing the krypton concentration quickly below 1 ppt (parts per trillion, 1 ppt = 10^(-12) mol/mol) without emptying and refilling of the detector.

In addition, the column was operated in the same closed loop in inverse mode in order to reduce Rn-222 by about 20% during the first science run.

This so-called online removal for both noble gases along with the working principle of the distillation system are presented within this talk.

Water Tank Filling

We started to fill the water tank:

In this view from the top, the cryostat with the actual detector is visible on the left. Photomultiplier tubes of the water Cherenkov muon veto are seen at the bottom and side of the water tank, to the right of the image.

In this view from the top, the cryostat with the actual detector is visible on the left. Photomultiplier tubes of the water Cherenkov muon veto are seen at the bottom and side of the water tank, to the right of the image.

The water acts as a passive shielding against external radioactivity. In addition, using the photomultipliers that can be seen towards the right of the picture, the water acts as an active muon detector. Muons may induce events in the xenon detector that may mimic dark matter signals. We therefore turn a blind eye (“veto”) for a short time whenever a muon travels through the water tank.

Lowering the radioactivity of the XENON1T photosensors

E. Aprile et al (XENON Collaboration), Lowering the radioactivity of the XENON1T photosensors, arXiv:1503.07698, Eur. Phys. J. C75 (2015) 11, 546.

The XENON1T experiment employs 242 photomultiplier tubes (PMTs) in the time projection chamber, arranged into two circular arrays. Because the overall background goal of the detector is incredibly low, with less than 1 expected event in a tonne of liquid xenon and one full year of data, the PMTs must be made out of ultra-pure materials. These materials were selected for their content in traces of 238-U, 232-Th, 40-K, 60-Co, 137-Cs and other long-lived radionuclides.

The XENON collaboration joined efforts with Hamamatsu to produce a photosensor that meets the strict requirements of our experiment. The sensor is a 3-inch diameter tube that operates stably at -100 C and at a pressure of 2 atmospheres. It has a high quantum efficiency, with a mean around 35%, for the xenon scintillation light at 178 nm and 90% photon collection efficiency.

PMT_schematicsThe sensor, shown schematically in the left picture, features a VUV-transparent quartz window, with a low-temperature bi-alkali photocathode deposited on it. A 12-dynode electron multiplication system ensures a signal amplification of ~3 millions, which is a crucial feature to detect the tiny signals induced by the rare collisions of dark matter particles with xenon nuclei.

Before the tubes were ready to be manufactured, the construction materials were inspected with gamma-ray spectroscopy and glow-discharge mass spectroscopy (GDMS). For the former, we employed the world’s most sensitive high-purity germanium detectors, GeMPI and Gator, operated deep underground at the Gran Sasso Laboratory. GDMS can detect trace impurities in solid samples and the results were compatible with those from germanium screening. We measured many samples to select the final materials for the PMT production. As an example, specific 226-Ra activities around or below 0.3 mBq/PMT were seen in most of the inspected materials. Such an activity corresponds to 3 x 10-4 226-Ra decays per second and tube, or about 26 decays per day.

BarChart_blogThe relative contribution of the selected materials to the trace contaminations in U, Th, K, Co and Cs of the final product, seen in the left picture, also tells us how to improve further sensor versions for the XENONnT upgrade. Most of the nuclides in the 238-U and 232-Th chains, especially dangerous for their emission of alpha particles, that can the produce fast neutrons in (alpha,n) reactions, are located in the ceramic stem of the tube. In consequence, finding a new material to replace the ceramic might drastically improve the background expectations.

pmts_gatorOnce the final production started, and the tubes were delivered in several batches to our collaboration, they were measured in the Gator detector. Its inner chamber can accommodate 15 PMTs at a time, as seen in the left picture. Each batch was screened for about 15 days, and theobserved activities were mostly consistent from batch to batch. For all measured PMTs, we obtain contaminations in uranium and thorium below 1 mBq/PMT. While 60-Co was at the level of 0.8 mBq/PMT, 40-K dominates the gamma activity with about 13 mBq/PMT. The information from screening was considered in the final arrangement of the PMTs in the XENON1T arrays. PMTs with somewhat higher activities are placed in the outer rings, where they are more distant from the central, fiducial xenon region of the detector.

The average activities per PMT of all trace isotopes served as input contaminations to a full Monte Carlo simulation of the expected backgrounds in XENON1T. The results show that the PMTs will provide about 1% and 6% of the total electronic and recoil background of the experiment, respectively. We can therefore safely conclude that the overall radioactivity of the sensors is sufficiently low, and they will certainly not limit the dark matter sensitivity of the XENON1T experiment.

Measuring Kr Contamination with an Atom Trap

 

Prof. Elena Aprile and Graduate Student Luke Goetzke work on the ATTA system at Columbia University

Prof. Elena Aprile and Graduate Student Luke Goetzke work on the ATTA system at Columbia University

The Krypton Problem

One of the many advantages of using xenon as a dark matter target is that xenon has no naturally occurring long-lived radioactive isotopes. However, when xenon is distilled from air, about 1 krypton atom per billion xenon atoms is also gathered. A very small fraction of these krypton atoms, only one in one hundred billion, are the radioactive isotope 85-Kr.

The decay of 85-Kr releases an electron which can then scatter in the xenon detector. These electronic recoil events can potentially obscure even rarer signals from interactions with dark matter. Thus, for dark matter detectors using liquid xenon, the krypton needs to be removed. This is done by passing the xenon through a cryogenic distillation column specifically designed for removing krypton.

After going through the krypton column, the xenon is very clean. For XENON100, there are only ~10 krypton atoms per trillion xenon atoms. Finding one of those krypton atoms is like picking out one single star from the entire Milky Way galaxy. XENON1T has 10 times even less krypton in the xenon.

Measuring the Krypton Contamination

Measuring such a tiny amount of krypton is not trivial. One way is to look for the decay signature of 85-Kr using the XENON detector itself. However, due to its relatively long half life (~11 years), it takes many months to get an accurate estimate with this method. So, how do we measure the tiny amount of krypton relatively quickly and accurately?

An atom trapping device has has been developed by the group at Columbia University to do exactly that (see E. Aprile, T. Yoon, A. Loose, L. W. Goetzke, and T. Zelevinsky, “An atom trap trace analysis system for measuring krypton contamination in xenon dark matter detectors”, Rev. Sci. Instrum., 84, 093105 (2013), arXiv:1305.6510). The method, called Atom Trap Trace Analysis (ATTA), was originally developed at Argonne National Lab for the purpose of radioactive dating. It has been adapted to measure samples of xenon gas taken directly from the XENON detectors.

All ATTA devices have the same operating principle: traditional laser cooling and trapping techniques are employed to selectively cool and trap the element of interest present in the sample. The trapped atoms emit light which is detected by a photo detector, in our case an avalanche photodiode. The trapped atoms can thus be counted. The Columbia ATTA device is designed to be sensitive to single trapped atoms, since for clean samples the average number of krypton atoms in the trap at any given time is close to zero.

The rate at which the atoms are loaded into the trap is the number we are after. The device is calibrated carefully in order to find the trapping efficiency, i.e. the fraction of krypton atoms that get trapped and counted successfully. Multiplying the measured loading rate for a given sample by the known trapping efficiency gives the total number of krypton atoms flowing through the system. Finally, measuring how many xenon atoms flow through the system at the same time allows the krypton fraction to be calculated. The entire measurement can be completed in one working day.

The Columbia ATTA device allows the xenon used in XENON1T to be assayed for krypton contamination quickly and accurately, thus ensuring that krypton levels are safe before beginning a dark matter run, and during the run itself. And it looks pretty cool, too!

 

The neutron background of the XENON100 dark matter search experiment

In order to search for dark matter, it is imperative that background signals in particular from neutrons are well under control. We describe the successful techniques and leading results from our efforts in a dedicated publications:

E. Aprile et al. (XENON100), The neutron background of the XENON100 dark matter search experiment, arXiv:1306.2303. The paper is also published in Journal of Physics G 40 (2013), 115201.

Study of the electromagnetic background in the XENON100 experiment

We have published our excellent understanding of the background in the XENON100 detector that comes from beta and gamma radiation:

E. Aprile et al. (XENON100), Study of the electromagnetic background in the XENON100 experiment, arXiv:1101.3866. The paper is also published in Physical Review D83 (2011), 082001, with an erratum ibid. D85 (2012), 029904.