Tag Archives: background

XeSAT2017: Online krypton and radon removal for the XENON1T experiment

This talk by Michael Murra (slides) was presented at the XeSAT2017 conference in Khon Kaen, Thailand, from 3. – 7. April 2017.

The  main background for the XENON1T experiment are the intrinsic contaminants krypton and radon in the xenon gas. Instead of purifying the xenon once before starting the science run we were able to operate our distillation column in a closed loop with the XENON1T detector system running during its commissioning phase. This resulted into reducing the krypton concentration quickly below 1 ppt (parts per trillion, 1 ppt = 10^(-12) mol/mol) without emptying and refilling of the detector.

In addition, the column was operated in the same closed loop in inverse mode in order to reduce Rn-222 by about 20% during the first science run.

This so-called online removal for both noble gases along with the working principle of the distillation system are presented within this talk.

Water Tank Filling

We started to fill the water tank:

In this view from the top, the cryostat with the actual detector is visible on the left. Photomultiplier tubes of the water Cherenkov muon veto are seen at the bottom and side of the water tank, to the right of the image.

In this view from the top, the cryostat with the actual detector is visible on the left. Photomultiplier tubes of the water Cherenkov muon veto are seen at the bottom and side of the water tank, to the right of the image.

The water acts as a passive shielding against external radioactivity. In addition, using the photomultipliers that can be seen towards the right of the picture, the water acts as an active muon detector. Muons may induce events in the xenon detector that may mimic dark matter signals. We therefore turn a blind eye (“veto”) for a short time whenever a muon travels through the water tank.

Lowering the radioactivity of the XENON1T photosensors

E. Aprile et al (XENON Collaboration), Lowering the radioactivity of the XENON1T photosensors, arXiv:1503.07698, Eur. Phys. J. C75 (2015) 11, 546.

The XENON1T experiment employs 242 photomultiplier tubes (PMTs) in the time projection chamber, arranged into two circular arrays. Because the overall background goal of the detector is incredibly low, with less than 1 expected event in a tonne of liquid xenon and one full year of data, the PMTs must be made out of ultra-pure materials. These materials were selected for their content in traces of 238-U, 232-Th, 40-K, 60-Co, 137-Cs and other long-lived radionuclides.

The XENON collaboration joined efforts with Hamamatsu to produce a photosensor that meets the strict requirements of our experiment. The sensor is a 3-inch diameter tube that operates stably at -100 C and at a pressure of 2 atmospheres. It has a high quantum efficiency, with a mean around 35%, for the xenon scintillation light at 178 nm and 90% photon collection efficiency.

PMT_schematicsThe sensor, shown schematically in the left picture, features a VUV-transparent quartz window, with a low-temperature bi-alkali photocathode deposited on it. A 12-dynode electron multiplication system ensures a signal amplification of ~3 millions, which is a crucial feature to detect the tiny signals induced by the rare collisions of dark matter particles with xenon nuclei.

Before the tubes were ready to be manufactured, the construction materials were inspected with gamma-ray spectroscopy and glow-discharge mass spectroscopy (GDMS). For the former, we employed the world’s most sensitive high-purity germanium detectors, GeMPI and Gator, operated deep underground at the Gran Sasso Laboratory. GDMS can detect trace impurities in solid samples and the results were compatible with those from germanium screening. We measured many samples to select the final materials for the PMT production. As an example, specific 226-Ra activities around or below 0.3 mBq/PMT were seen in most of the inspected materials. Such an activity corresponds to 3 x 10-4 226-Ra decays per second and tube, or about 26 decays per day.

BarChart_blogThe relative contribution of the selected materials to the trace contaminations in U, Th, K, Co and Cs of the final product, seen in the left picture, also tells us how to improve further sensor versions for the XENONnT upgrade. Most of the nuclides in the 238-U and 232-Th chains, especially dangerous for their emission of alpha particles, that can the produce fast neutrons in (alpha,n) reactions, are located in the ceramic stem of the tube. In consequence, finding a new material to replace the ceramic might drastically improve the background expectations.

pmts_gatorOnce the final production started, and the tubes were delivered in several batches to our collaboration, they were measured in the Gator detector. Its inner chamber can accommodate 15 PMTs at a time, as seen in the left picture. Each batch was screened for about 15 days, and theobserved activities were mostly consistent from batch to batch. For all measured PMTs, we obtain contaminations in uranium and thorium below 1 mBq/PMT. While 60-Co was at the level of 0.8 mBq/PMT, 40-K dominates the gamma activity with about 13 mBq/PMT. The information from screening was considered in the final arrangement of the PMTs in the XENON1T arrays. PMTs with somewhat higher activities are placed in the outer rings, where they are more distant from the central, fiducial xenon region of the detector.

The average activities per PMT of all trace isotopes served as input contaminations to a full Monte Carlo simulation of the expected backgrounds in XENON1T. The results show that the PMTs will provide about 1% and 6% of the total electronic and recoil background of the experiment, respectively. We can therefore safely conclude that the overall radioactivity of the sensors is sufficiently low, and they will certainly not limit the dark matter sensitivity of the XENON1T experiment.

Measuring Kr Contamination with an Atom Trap

 

Prof. Elena Aprile and Graduate Student Luke Goetzke work on the ATTA system at Columbia University

Prof. Elena Aprile and Graduate Student Luke Goetzke work on the ATTA system at Columbia University

The Krypton Problem

One of the many advantages of using xenon as a dark matter target is that xenon has no naturally occurring long-lived radioactive isotopes. However, when xenon is distilled from air, about 1 krypton atom per billion xenon atoms is also gathered. A very small fraction of these krypton atoms, only one in one hundred billion, are the radioactive isotope 85-Kr.

The decay of 85-Kr releases an electron which can then scatter in the xenon detector. These electronic recoil events can potentially obscure even rarer signals from interactions with dark matter. Thus, for dark matter detectors using liquid xenon, the krypton needs to be removed. This is done by passing the xenon through a cryogenic distillation column specifically designed for removing krypton.

After going through the krypton column, the xenon is very clean. For XENON100, there are only ~10 krypton atoms per trillion xenon atoms. Finding one of those krypton atoms is like picking out one single star from the entire Milky Way galaxy. XENON1T has 10 times even less krypton in the xenon.

Measuring the Krypton Contamination

Measuring such a tiny amount of krypton is not trivial. One way is to look for the decay signature of 85-Kr using the XENON detector itself. However, due to its relatively long half life (~11 years), it takes many months to get an accurate estimate with this method. So, how do we measure the tiny amount of krypton relatively quickly and accurately?

An atom trapping device has has been developed by the group at Columbia University to do exactly that (see E. Aprile, T. Yoon, A. Loose, L. W. Goetzke, and T. Zelevinsky, “An atom trap trace analysis system for measuring krypton contamination in xenon dark matter detectors”, Rev. Sci. Instrum., 84, 093105 (2013), arXiv:1305.6510). The method, called Atom Trap Trace Analysis (ATTA), was originally developed at Argonne National Lab for the purpose of radioactive dating. It has been adapted to measure samples of xenon gas taken directly from the XENON detectors.

All ATTA devices have the same operating principle: traditional laser cooling and trapping techniques are employed to selectively cool and trap the element of interest present in the sample. The trapped atoms emit light which is detected by a photo detector, in our case an avalanche photodiode. The trapped atoms can thus be counted. The Columbia ATTA device is designed to be sensitive to single trapped atoms, since for clean samples the average number of krypton atoms in the trap at any given time is close to zero.

The rate at which the atoms are loaded into the trap is the number we are after. The device is calibrated carefully in order to find the trapping efficiency, i.e. the fraction of krypton atoms that get trapped and counted successfully. Multiplying the measured loading rate for a given sample by the known trapping efficiency gives the total number of krypton atoms flowing through the system. Finally, measuring how many xenon atoms flow through the system at the same time allows the krypton fraction to be calculated. The entire measurement can be completed in one working day.

The Columbia ATTA device allows the xenon used in XENON1T to be assayed for krypton contamination quickly and accurately, thus ensuring that krypton levels are safe before beginning a dark matter run, and during the run itself. And it looks pretty cool, too!

 

The neutron background of the XENON100 dark matter search experiment

In order to search for dark matter, it is imperative that background signals in particular from neutrons are well under control. We describe the successful techniques and leading results from our efforts in a dedicated publications:

E. Aprile et al. (XENON100), The neutron background of the XENON100 dark matter search experiment, arXiv:1306.2303. The paper is also published in Journal of Physics G 40 (2013), 115201.

Study of the electromagnetic background in the XENON100 experiment

We have published our excellent understanding of the background in the XENON100 detector that comes from beta and gamma radiation:

E. Aprile et al. (XENON100), Study of the electromagnetic background in the XENON100 experiment, arXiv:1101.3866. The paper is also published in Physical Review D83 (2011), 082001, with an erratum ibid. D85 (2012), 029904.