In October 2015 the assembly of the XENON1T time projection chamber (TPC) began in the above-ground cleanroom at LNGS. After methodical cleaning to remove impurities and etch away radioactive surface contamination, all of the necessary components to build the new instrument were ready. A small team of scientists with the help of a few technicians steadily constructed the first of the next generation of TPCs for dark matter direct detection.
First the field cage was assembled by mounting the teflon (PTFE) support pillars between top and bottom rings and inserting the 74 copper field-shaping rings (see the October 5 post for details). The approximately 1 meter high by 1 meter diameter structure was assembled on a special table to allow access from the top and inside of the cage to install reflector panels and resistor chains and to insert fiber optic cables. Weaving of one of the 24 fiber optic cables around the top ring of the TPC and through a 250 μm hole in the PTFE panel is shown in the image to the right. The fibers will be used to uniformly distribute light inside the TPC for PMT calibration. One can also see in the image two sets of high voltage chains (diagonal strips inside the copper rings) that run vertically along the field cage. A chain consists of 73 resistors (5 GΩ each) that bridge neighbouring rings, allowing for an optimal electric field of 1 kV/cm. In parallel to the field cage construction, the top PMT array (see the October 29 post for more details) was installed inside the TPC diving bell.
Next the cathode, anode and gate electrodes that provide radially-uniform electric fields across the TPC and the screening meshes that protect the PMTs from the high electric field were installed. The electrodes consist of wires or hexagonal meshes (grids) stretched across stainless steel rings. The bottom screening mesh, cathode, and small PTFE reflectors were assembled onto the bottom PMT array while still in its transport box. To assemble the “top stack”, shown in the image to the right, the gate grid was gently lifted and affixed onto the top TPC ring, followed by the anode grid, with 5 mm insulating spacers in between the two grids. The xenon liquid/gas interface will reside between these two electrodes. Then the small PTFE reflector panels were assembled and the protective mesh for the PMTs was placed on top. Levelmeters that measure by capacitance the height of the liquid xenon were installed onto the top TPC ring. At this point the field cage was ready to be mounted inside the bell.
The striking image to the left shows the top PMT array as seen from the bottom of the field cage after mounting it to the bell. One can even see the ghost-like images of PMTs reflected in the polished surfaces of the PTFE panels! The graininess of the array in the photo comes from the three mesh layers of the top stack. In the days that followed, the bottom PMT array, with cathode, was mounted to the field cage, and monitoring devices such as temperature sensors and diagnostic PMTs were installed. Finally, the TPC was wrapped and secured to prepare for its big move underground.
On November 4th the TPC was transported into Hall B and wheeled inside the water tank for installation. Using a set of 3 winches from the top dome of the water tank, the delicate instrument, now close to 500 kg, was slowly and carefully raised from the bottom of the tank, through an opening in the cleanroom floor, and up to the dome of the tank. At this point integration of the TPC with other XENON1T subsystems, such as the DAQ and cryogenics systems, began. The high voltage feedthrough, piping for liquid xenon, and cabling for PMTs, fiber optics, sensors, and electrodes were connected. After many visual and mechanical checks, electrical tests, and a final cleaning, the stainless steel vessel that will contain the liquid xenon was lifted and sealed to enclose the TPC. The instrument is now ready for the next phase of XENON1T commissioning.