XENON1T probes deeper into Dark Matter WIMPs, with 1300 kg of cold Xe atoms

Results from XENON1T, the world’s largest and most sensitive detector dedicated to a direct search for Dark Matter in the form of Weakly Interacting Massive Particles (WIMPs), are reported today (Monday, 28th May) by the spokesperson, Prof. Elena Aprile of Columbia University, in a seminar at the hosting laboratory, the INFN Laboratori Nazionali del Gran Sasso (LNGS), in Italy. The international collaboration of more than 165 researchers from 27 institutions, has successfully operated XENON1T, collecting an unprecedentedly large exposure of about 1 tonne x year with a 3D imaging liquid xenon time projection chamber. The data are consistent with the expectation from background, and place the most stringent limit on spin-independent interactions of WIMPs with ordinary matter for a WIMP mass higher than 6 GeV/c². The sensitivity achieved with XENON1T is almost four orders of magnitude better than that of XENON10, the first detector of the XENON Dark Matter project, which has been hosted at LNGS since 2005. Steadily increasing the fiducial target mass from the initial 5 kg to the current 1300 kg, while simultaneously decreasing the background rate by a factor 5000, the XENON collaboration has continued to be at the forefront of Dark Matter direct detection, probing deeper into the WIMP parameter space.

Shown are the limits on WIMP interactions, derived from one year of XENON1T data. The inset compares our limit and sensitivity with the limit and sensitivities of previous experiments.

WIMPs are a class of Dark Matter candidates which are being frantically searched with experiments at the Large Hadron Collider, in space, and on Earth. Even though about a billion WIMPs are expected to cross a surface of one square meter per second on Earth, they are extremely difficult to detect. Results from XENON1T show that WIMPs, if they indeed comprise the Dark Matter in our galaxy, will result in a rare signal, so rare that even the largest detector built so far can not see it directly. XENON1T is a cylindrical detector of approximately one meter height and diameter, filled with liquid xenon at -95°C, with a density three times that of water. In XENON1T, the signature of a WIMP interaction with xenon atoms is a tiny flash of scintillation light and a handful of ionization electrons, which themselves are turned into flashes of light. Both light signals are simultaneously recorded with ultra-sensitive photodetectors, giving the energy and 3D spatial information on an event-by-event basis.

In developing this unique type of detector to search for a rare WIMP signal, many challenges had to be overcome; first and foremost the reduction of the overwhelmingly large background from many sources, from radioactivity to cosmic rays. Today, XENON1T is the largest Dark Matter experiment with the lowest background ever measured, counting a mere 630 events in one year and one tonne of xenon in the energy region of interest for a WIMP search. The search results, submitted to Physical Review Letters, are based on 1300 kg out of the total 2000 kg active xenon target and 279 days of data, making it the first WIMP search with a noble liquid target exposure of 1.0 tonne x year. Only two background events were expected in the innermost, cleanest region of the detector, but none were detected, setting the most stringent limit on WIMPs with masses above 6 GeV/c² to date. XENON1T continues to acquire high quality data and the search will continue until it will be upgraded with a larger mass detector, being developed by the collaboration. With another factor of four increase in fiducial target mass, and ten times less background rate, XENONnT will be ready in 2019 for a new exploration of particle Dark Matter at a level of sensitivity nobody imagined when the project started in 2002.

The energy spectrum and resolution of XENON1T

The search for new physics with a large underground xenon detector is like listening to your favorite song in a quiet room with high end headphones for the first time. Even if you have listened to the song a thousand times, you will be surprised by all the small nuances that have been there all along and that you did not hear before. This is either because it was too loud around you or because your headphones were not good enough. The quiet room in this analogy is the xenon detector that has been made from materials selected for their ultra-low radioactivity and that is shielded by a water tank, a mountain and ultimately the xenon in the detector itself. The high end headphones on the other hand are the extremely sensitive photomultipliers, data acquisition system and tailor-made software to read out the signals produced by particles interacting inside the detector.

As you may have read before on this blog (we love to point this out…) XENON1T is the lowest background dark matter detector in the world. But the fact that the detector is so quiet does not mean that it does not measure anything. As a very sensitive instrument it is able to detect even the faintest signals from radioactive decays in the detector materials or the xenon itself. Over the course of one year these decays amount to a sizeable amount of data. The picture below shows what this looks like.

A preliminary energy spectrum from electronic recoil background data for the second science run of the XENON1T experiment.

The x-axis denotes the energies of particles measured with the XENON1T detector. These are mostly electrons, x-rays and higher energy $\gamma$-rays. The y-axis shows how many of these particles have been counted over the whole measurement time of the last science run of the experiment. In order to have a better comparability with similar experiments, the event count has been divided by the live time of the experiment, its mass and the step size on the energy axis (the binning) in which we count. One can see that even in the highest peaks we measure less than one event per kilogram detector material and day of measurement time in a 100 keV energy window. A quiet room, indeed. And the features in the spectrum are all those nuances that one could not see before. So what are they?

One can divide the spectrum into several regions. Only the small portion of data in the very left of the plot next to the first grey-shaded region is relevant to the standard dark matter search. The heavy and non-relativistic WIMP is expected to only deposit very little energy, so it resides here. The following grey region is blinded, which means it has deliberately been made inacessible to XENON analysers. The reason for this is that it might contain traces of a rare nuclear decay of Xe-124, the two neutrino double electron capture, that has not been observed until now, and we do not want to bias ourselves in looking for it. The large region from about 100-2300 keV contains multiple peaks. Each of these peaks belongs to a monoenergetic $\gamma$-line of a radioactive isotope contained in the detector materials or the extremely pure xenon itself. One can easily see that the peaks are sitting on an irregular continuous pedestal. This is created by $\gamma$-rays depositing only part of their total energy due to Compton scattering inside or outside the detector, $\beta$ decays of radioisotopes inside the detector, and the two neutrino double $\beta$-decay of Xe-136. The latter produces a continuous energy spectrum over the whole energy range that ends at 2458 keV. The decay is rare, but becomes relevant due to the large amount of Xe-136 in the detector and the relative smallness of other background contributions. Xe-136 is also responsible for the second gray-shaded region at high energies which might contain an experimental signature of its neutrinoless double $\beta$-decay. This hypothetical decay mode would produce a monoenergetic line centered at the end of the aforementioned spectrum at 2458 keV. The observation of this decay would be a gateway to new physics and complements the physics program of XENON1T. As their signatures have to be distinguished from other background components the energy resolution of the detector becomes crucial.

Preliminary energy resolution of the XENON1T experiment as a function of the measured particle energy.

To grasp the concept of energy resolution one can imagine the following situation in the energy spectrum. If you have two peaks next to one another, one your sought-after signal and one a pesky background, how far do they have to be apart in order to be seen as individual peaks? This of course relies on how wide they are. Thus, the energy resolution in XENON1T is characterized by the width of peaks in the energy spectrum relative to their measured energy. By fitting Gaussian functions to all the peaks in the spectrum at the top one obtains the ratio of peak width to peak center. This is what the above plot shows for several liquid xenon dark matter experiments. One can see that with an increase in particle energy the resolution improves. It is also evident that XENON1T leads the pack over a wide energy range. This is underlines that XENON1T is the astroparticle physics equivalent of high-end headphones. With these the XENON collaboration is in the position to pursue several exciting physics channels apart from weakly interacting massive particles. So stay tuned for the analyses to come.

XENON1T, the most sensitive detector on Earth searching for WIMP dark matter, releases its first result

[Press Release May 2017 – for immediate release. Preprint is on the arxiv]

The best result on dark matter so far! … and we just got started!”.

This is how scientists behind XENON1T, now the most sensitive dark matter experiment world-wide, hosted in the INFN Laboratori Nazionali del Gran Sasso, Italy, commented on their first result from a short 30-day run presented today to the scientific community.

XENON1T at LNGS

XENON1T installation in the underground hall of Laboratori Nazionali del Gran Sasso. The three story building on the right houses various auxiliary systems. The cryostat containing the LXeTPC is located inside the large water tank on th left, next to the building. (Photo by Roberto Corrieri and Patrick De Perio)

Dark matter is one of the basic constituents of the Universe, five times more abundant than ordinary matter. Several astronomical measurements have corroborated the existence of dark matter, leading to a world-wide effort to observe directly dark matter particle interactions with ordinary matter in extremely sensitive detectors, which would confirm its existence and shed light on its properties. However, these interactions are so feeble that they have escaped direct detection up to this point, forcing scientists to build detectors that are more and more sensitive. The XENON Collaboration, that with the XENON100 detector led the field for years in the past, is now back on the frontline with the XENON1T experiment. The result from a first short 30-day run shows that this detector has a new record low radioactivity level, many orders of magnitude below surrounding materials on Earth. With a total mass of about 3200kg, XENON1T is at the same time the largest detector of this type ever built. The combination of significantly increased size with much lower background implies an excellent dark matter discovery potential in the years to come.

The XENON1T TPC

Scientists assembling the XENON1T time projection chamber. (Photo by Enrico Sacchetti)

The XENON Collaboration consists of 135 researchers from the US, Germany, Italy, Switzerland, Portugal, France, the Netherlands, Israel, Sweden and the United Arab Emirates. The latest detector of the XENON family has been in science operation at the LNGS underground laboratory since autumn 2016. The only things you see when visiting the underground experimental site now are a gigantic cylindrical metal tank, filled with ultra-pure water to shield the detector at his center, and a three-story-tall, transparent building crowded with equipment to keep the detector running, with physicists from all over the world. The XENON1T central detector, a so-called Liquid Xenon Time Projection Chamber (LXeTPC), is not visible. It sits within a cryostat in the middle of the water tank, fully submersed, in order to shield it as much as possible from natural radioactivity in the cavern. The cryostat allows keeping the xenon at a temperature of -95°C without freezing the surrounding water. The mountain above the laboratory further shields the detector, preventing it to be perturbed by cosmic rays. But shielding from the outer world is not enough since all materials on Earth contain tiny traces of natural radioactivity. Thus extreme care was taken to find, select and process the materials making up the detector to achieve the lowest possible radioactive content. Laura Baudis, professor at the University of Zürich and professor Manfred Lindner from the Max-Planck-Institute for Nuclear Physics in Heidelberg emphasize that this allowed XENON1T to achieve record “silence”, which is necessary to listen with a larger detector much better for the very weak voice of dark matter.

XENON1T first results limit

The spin-independent WIMP-nucleon cross section
limits as a function of WIMP mass at 90% confidence
level (black) for this run of XENON1T. In green and yellow
are the 1- and 2σ sensitivity bands. Results from LUX
(red), PandaX-II (brown), and XENON100 (gray)
are shown for reference.

A particle interaction in liquid xenon leads to tiny flashes of light. This is what the XENON scientists are recording and studying to infer the position and the energy of the interacting particle and whether it might be dark matter or not. The spatial information allows to select interactions occurring in the central 1 ton core of the detector. The surrounding xenon further shields the core xenon target from all materials which already have tiny surviving radioactive contaminants. Despite the shortness of the 30-day science run the sensitivity of XENON1T has already overcome that of any other experiment in the field, probing un-explored dark matter territory.  “WIMPs did not show up in this first search with XENON1T, but we also did not expect them so soon!” says Elena Aprile, Professor at Columbia University and spokesperson of the project. “The best news is that the experiment continues to accumulate excellent data which will allow us to test quite soon the WIMP hypothesis in a region of mass and cross-section with normal atoms as never before. A new phase in the race to detect dark matter with ultra-low background massive detectors on Earth has just began with XENON1T. We are proud to be at the forefront of the race with this amazing detector, the first of its kind.”

As always, feel free to contact the XENON collaboration at contact@xenon1t.org.

Search for Event Rate Modulation in XENON100 Electronic Recoil Data

E. Aprile et al. (XENON Collaboration), Exclusion of Leptophilic Dark Matter Models using XENON100 Electronic Recoil Data, Science 2015 vol. 349 no. 6250 pp. 851, and Search for Event Rate Modulation in XENON100 Electronic Recoil Data, Physical Review Letters 115, 091302 (2015) and arxiv.1507.07748

The annual modulation signature

Although we believe that Dark Matter is Out There, we are completely oblivious to the impact of Dark Matter on our daily lives. On the human scale Dark Matter is nearly impossible to detect, the faintest whisper of the galaxy. The vast majority of the time Dark Matter particles pass right through us as if we don’t exist.

It is hypothesized, however, that we may be able to tune our ears to hear the unique song of Dark Matter here on Earth. Doing so successfully would constitute direct proof that Dark Matter exists.

Rather than the swelling symphony that you might expect from the most abundant matter in the Universe, this song will be a random melody, plucked out in individual notes. The tempo of these notes, that is the rate of events in a Dark Matter detector, should vary over the course of one year.

Evidence suggests that both the Sun and the Earth are enveloped by the Dark Matter halo of the Milky Way. As the Earth’s velocity relative to the Sun varies over its one-year orbit, so does it’s velocity relative to the Dark Matter. This should result in the so-called “WIMP wind” that blows harder in June, and softer in December.

This variation itself becomes the song of Dark Matter, repeating every year like clockwork – the annual modulation signature.

 

Illustration of the expected “WIMP wind” due to the motion of the Sun relative to the DM halo of the Milky Way. Figure from arXiv:1209.3339

Illustration of the expected “WIMP wind” due to the motion of the Sun relative to the DM halo of the Milky Way. Figure from arXiv:1209.3339

XENON100 was the first instrument using liquified xenon that was able to search for such a signature. The liquid xenon that fills the detector emits light when particles interact with it. We take pictures of the light with extremely sensitive devices, and use them to identify the energy and type of interaction. We took data with this detector from February 2011 to March 2012, long enough to observe more than one full cycle of the Dark Matter annual modulation.

What will Dark Matter events look like?

In XENON100, more than one type of event is identifiable. The type depends on whether Dark Matter interacts with the nuclei of the atoms in the detector, or with the electrons surrounding these nuclei. Typically, we assume the interactions of Dark Matter are with the nuclei.

For our newest study, we considered the possibility that Dark Matter instead interacts with the electrons in XENON100, and looked for an annual modulation signature.

One challenge of such a study is that many things can potentially make the rate of events in the detector vary in time, for example random noise in the instrument itself or the decay of radioactive particles. We examined all these possibilities carefully, and determined to what extent they might affect the rate of events in the detector.

The results of our study show some evidence for a rate of events varying periodically over the course of roughly one year, or perhaps longer. This slight change in rate – about half of the average rate in the detector, which is itself very small – can not yet be explained. There’s a one in a thousand chance that it is just a statistical fluke.

Before you go extolling the news from the rooftops, however, take note that our observation is not what we would naively expect from Dark Matter.

Our data shows that the rate of multiple-scatter events (interactions with more than one atom) varies almost as much as that of single-scatter events. Since Dark Matter interacts extremely rarely, we would never expect it to cause multiple-scatter events. In addition, the date of the peak rate in our detector does not match up with what we expect due to the motion of the Earth through the Dark Matter halo.

New perspective on an old claim of Dark Matter discovery

The DAMA/LIBRA collaboration has observed an annual modulation signal in their NaI detectors for more than a decade. They claim that it can be interpreted as a direct detection of Dark Matter. Meanwhile, many experiments that are more sensitive than DAMA/LIBRA (including XENON100) have found no comparable evidence of Dark Matter interacting with atomic nuclei.

However, given the fact that the NaI detectors are unable to differentiate between different types of events, one way to resolve this tension between the different experiments is if the interactions in DAMA/LIBRA are with the electrons.

Although our study shows that XENON100 sees some hint of a signal varying over long periods, the size of that signal is still much smaller than what we would expect to see if we were, in fact, detecting the same signal as DAMA/LIBRA. Thus, we find that it is extremely unlikely to be the case that DAMA/LIBRA observes an annual modulation due to interactions with electrons. The data from XENON100 exclude this possibility with a statistical significance of 4.8σ, corresponding to a probability of about one in a million.

Best-fit amplitude and phase of annual modulation signal in XENON100 from a profile likelihood study. Expected signal from DAMA/LIBRA and expected phase from the standard Dark Matter halo overlaid for comparison.

Best-fit amplitude and phase of annual modulation signal in XENON100 from a profile likelihood study. Expected signal from DAMA/LIBRA and expected phase from the standard Dark Matter halo overlaid for comparison.

Our study answers an important question about how to interpret the DAMA/LIBRA annual modulation signal, but raises many more. Why haven’t we discovered the annual modulation of Dark Matter? What causes the annual modulation in DAMA/LIBRA? What causes the slight variation of rate in XENON100?

More data has since been taken by XENON100 that will hopefully allow the last question to be answered. As to the nature of Dark Matter, well, we will have to keep listening.

First axion results from the XENON100 experiment

E. Aprile et al. (XENON100), First Axion Results from the XENON100 Experiment, Physical Review D 90, 062009 (2014) and arXiv:1404.1455.

Is it better a dark matter WIMP or the Imp from GoT? I don’t know, but I would rather advice you to not forget the axions from GUT – Grand Unification Theories. Axions, if they exist, could solve several yet unsolved problems in understanding our Universe and in the description of the forces that govern the subatomic world. The axions have been postulated by Roberto Peccei and Helen Quinn in 1977 to explain the discrepancy between theory and observation in Quantum Chromodynamics for what concern the Charge-Parity Violation. They could be an excellent dark matter candidate and solve at the same time the CPV problem. What does this mean?

In the Standard Model of particle physics, the fundamental force that regulates the interaction among the quarks is called the Strong Force. Let me remind you that the quarks are thought to be the fundamental constituent of the hadrons, among which we have the nucleons, i.e. the protons and neutrons which made the atoms. We know that the quarks come with a colour. To be clear, this colour is just a conventional name without implying that quarks are literally red, green or blue. It’s just a way to distinguish different kinds of quarks. Because of these colours, the quantum theory formalism that describes the quarks gets the name of chromo: Quantum Chromo Dynamics or QCD.

Now, in the Standard Model we have another force, called the Weak Force. This Weak Force is responsible of the decay of the nuclei; and whenever a neutrino is involved. Why do we care about Weak Interaction if the axons deal with Strong one? This is because of the CP symmetry violation.

Already in 1964 it was found that the Weak Interaction violates the CP symmetry. The fundamental particles may come with a charge (C), like the electron, and with a parity (P), which can be seen as a spatial symmetry. Like the human face which is symmetric (although not perfectly symmetric) between left and right. Before 1964 it was expected that by changing the charge of a particle (performing a so called charge conjugation) you get something different from what you had at the beginning: a positron is not an electron, but it is its charged-conjugated partner. The same thing was expected to happen with the parity conjugation: imagine to put a particle in front of a mirror, the mirrored particle won’t be the same as the original one.

However, it was believed that if you combine these two transformations (if you make a CP conjugation) you obtain the same situation as the one present at the beginning of the process. Well, in 1964, it was proven that this is not the case for the Weak Interactions, that is to say: Weak Interactions violate the CP symmetry. Nowadays we understand this process better and we can precisely describe this violation within the Standard Model of particle physics.

This CP symmetry violation, although perfectly fine with the Standard Model, has not been observed in the Strong Interaction. Imagine that you see a leaf that is about to fall from a branch, but never falls. The fall is predicted by the gravity, but it doesn’t happen. There must be something wrong! Or maybe we must be missing something. Like, the leaf being stuck to the branch. So, what is it happening to the Strong Interactions? Why haven’t we yet observed the CP violation in the Strong sector of the Standard Model?

We don’t know… yet. To solve this problem, Peccei and Quinn have introduced this new particle, the axion, that takes away the CP violation in the Strong Interaction processes, restoring the symmetry. It is like preventing the leaf to fall, and making the violation invisible. Why is this important for us?

Simple: now that the Higgs boson has been discovered and we have a clearer idea on how the particles acquire the mass they have, we are still unable to explain why we are living in a matter-dominated universe rather than an antimatter-dominated one. The definition of what is matter and what is antimatter is a purely human artifact: the two options, matter or antimatter universes, would be completely indistinguishable in terms of the laws of nature. The only difference you might experience is that instead of switching on the light letting the electrons flowing, you would do the same using positrons instead. So why the Nature has chosen the matter (electron) instead of the antimatter (positron)?

We think that the solution lies in understanding the CP violation. And the axion is one of the keystones in the building of this cathedral. There are several experimental groups searching for these particles, and many theoretical physicists are working on various axion models (oscillating between predictions and readjustment, once experimental results get published).

Concerning the experimental searches, it was recently realized that the dark matter detectors (like CDMS, EDELWEISS or xenon-based instruments) can be particularly suitable for such a challenge. About one year ago, we understood that XENON100 could play in the world championship of this competition, maybe winning the AC (not the America’s Cup, but the Axion’s Cup). So we have involved ourselves in this venture.

Supported by several theoretical models (also arising from Grand Unification Theories) we expect the axions to interact with the normal matter by coupling  either to photons, nucleon or electrons. By normal baryonic matter we mean the building blocks that constitute the Universe to which we naturally interacts. Everything you see, everything you touch is normal baryonic matter. Also XENON100 is made only of baryonic matter.

With it we could test the axion-electron coupling. This means that to explore the existence of this very elusive particles, we tried to observe the probability of an axion to kick out an electron from the xenon atoms (see the figure below). This process is called the axio-electric effect.

The axio-electric effect

The axio-electric effect converts an axion A into an electron e-, in the presence of either a nucleus Z+ or another electron e-.

The axio-electric effect is very similar to the photo-electric effect (whose discovery won Albert Einstein the Nobel Prize of Physics in 1921), with a crucial difference though: in our case instead of a photon we consider an axion hitting the electron and ionizing the xenon target. The axio-electric effect was first introduced and formalized by A. Derevianko and others in the late 1990s. What happen when an axion hits our xenon target?

It generates a small spark, which is immediately detected by the photomultiplier tubes, which continuously monitor the situation inside XENON100. XENON100 particularly good in discovering the axions through this effect. The secret lies in the cleanliness of the detector. XENON100 is definitively one of the cleanest places of the Universe. In which sense? Everything that is surrounding us is radioactive, emits radiation which continuously hits us: when you wash your hands you receive quite some amount of radiation, particularly if the washbasin is made of ceramic, because of the cobalt contained in the ceramic. This radiation is completely harmless for your body so we never worry about it. But in contrast, if you put the same amount of ceramic inside XENON100, the whole experiment would be spoiled! Hence, every single component has been carefully selected and the detector is operated in such a way that everything that generates a spark in its interior can be considered as good signal, and not some spurious radiation.

gAe_Galactic_noS2width_sensitivity-exclusion_withCLS

To give you an idea of the cleanliness of the XENON100 detector: imagine that you could sit inside the inner part of the XENON detector (wear the proper clothes, since the temperature is about -100 degrees). That place is so radiation-clean that you will have to wait for about a day between one low-energy event and another. All this means that if we see some light we have quite a good chance that this light is coming from something interesting — such as axions.

We have carefully run our experiment for more than a year, taking care of it like a sacred cow. We then skimmed the data that we collected during that time. At the end of the skimming procedure we have found no evidences of axions, as shown below.

gAe_Solar_noS2width_sensitivity-exclusion

What you see in the plot is the following: on the y-axis we show the coupling of the axion with the electron, i.e. a way to describe the probability they interact with the electrons; on the x-axis we shod the hypothetical mass of the axion. Since we don’t know either the coupling nor the mass, we have to plot them in such a graph, in order to check where they like to live (for a given mass the corresponding coupling and vice-versa). In these so-called exclusion plots, we show different experiments (whose names you can find on the plot) which have excluded certain phase space: each point [coupling, mass] above the line for a particular experiment has been rejected, and if the axion exist, it can be only be in the region below these lines. For example, it is highly impossible that an axion in the galaxy can have a mass of 2 keV and a coupling to the electrons 1E-11 (i.e. one in eight hundredth of millionth), since these characteristic have been excluded by CoGeNT, CDMS, EDELWEISS and more recently by XENON100. An axion with a mass of 2 keV and a coupling of 1E-13 is still possible: we haven’t been able to search for that yet. You can think of it like fishing: we try to go deeper and deeper with our fishing rods in different places of the lake. You can immediately see that the XENON100 has reached the deepest level in this search with respect to the other fishermen.

It has taken 40 years before finding the Higgs boson. The hunt for the axion has just started. We are out in front for tracking down these fundamental, elusive particles.

 

Dark Matter is Out There

Dark matter has been discovered. We know from measurements of the relic abundance of light elements that were generated just minutes after the Big Bang that the known, baryonic, matter is not sufficient to explain the energy-matter density of the Universe today. A cold dark matter component has been measured from the incredibly accurate observations of the Cosmic Microwave Background, which was emitted just 300,000 years after the Big Bang. And dark matter must exist in order to turn the tiny fluctuations in the Cosmic Microwave Background into the huge density fluctuations that are observed in the Universe today.

Our Milky Way

Our Milky Way contains much more mass in the form of the mysterious dark matter than meets the eye. Picture by Thomas Tuchan.

Gravitational lensing and dispersion measurements of galaxy clusters, the largest bound systems that have been observed, show that dark matter is the dominating mass component. Detailed studies of half a dozen or so merging galaxy clusters have clearly ruled out possible alternative explanations involving modifications of the gravitational law, and are now starting to probe the properties of dark matter itself. We also know that dark matter exists in our own galaxy, the Milky Way, which shows rotational velocities that are independent of radius at high radii, just as in any other spiral galaxy we observe. This flat rotation curve is clearly inconsistent with that expected from Kepler’s laws but is naturally explained by the fact that galaxies are immersed in a halo of dark matter that dominates their mass.

Taken together, we have discovered dark matter with independent measurements spanning vast time scales from a few minutes after the Big Bang all the way to today, and at length scales from the Cosmos as a whole to individual galaxies. Yet, what dark matter is made out of remains entirely unknown. Thus, research into the nature of dark matter is of utmost importance to our view of the Cosmos. It is pursued with a variety of diverse approaches that test dark matter interactions with other known particles, with itself, and at a range of different energies.

Dark matter can be expected to have couplings, albeit weak, to standard matter, so that it can be searched for with laboratory experiments. This direct search for dark matter is pursued with a variety of complementary technologies and experiments. The XENON project in particular is one of the most sensitive direct searches for dark matter.