Author Archives: Rafael Lang

Observation of Excess Events in the XENON1T Dark Matter Experiment

Press release, June 17, 2020. For immediate release. A pre-print of this publication reporting the data analysis and details of the observed excess is available on arxiv.org, and in the meantime also directly here for download. These results were first presented on June 17 in a dedicated webinar by graduate student Evan Shockley from the University of Chicago. The slides of this presentation and a recording are available.

Scientists from the international XENON collaboration announced today that data from their XENON1T, the world’s most sensitive dark matter experiment, show a surprising excess of events. The scientists do not claim to have found dark matter. Instead, they say to have observed an unexpected rate of events, the source of which is not yet fully understood. The signature of the excess is similar to what might result from a tiny residual amount of tritium (a hydrogen atom with one proton and two neutrons), but could also be a sign of something more exciting—such as the existence of a new particle known as the solar axion or the indication of previously unknown properties of neutrinos.

The XENON1T detector. Visible is the bottom array of photomultiplier tubes, and the copper structure that creates the electric drift field.

XENON1T was operated deep underground at the INFN Laboratori Nazionali del Gran Sasso in Italy, from 2016 to 2018. It was primarily designed to detect dark matter, which makes up 85% of the matter in the universe. So far, scientists have only observed indirect evidence of dark matter, and a definitive, direct detection is yet to be made. So-called WIMPs (Weakly Interacting Massive Particles) are among the theoretically preferred candidates, and XENON1T has thus far set the best limit on their interaction probability over a wide range of WIMP masses. In addition to WIMP dark matter, XENON1T was also sensitive to different types of new particles and interactions that could explain other open questions in physics. Last year, using the same detector, these scientists published in Nature the observation of the rarest nuclear decay ever directly measured.

The excess observed in XENON1T in the electronic recoil background at low energies, compared to the level expected from known backgrounds indicated as the red line.

The XENON1T detector was filled with 3.2 tonnes of ultra-pure liquefied xenon, 2.0 t of which served as a target for particle interactions. When a particle crosses the target, it can generate tiny signals of light and free electrons from a xenon atom. Most of these interactions occur from particles that are known to exist. Scientists therefore carefully estimated the number of background events in XENON1T. When data of XENON1T were compared to known backgrounds, a surprising excess of 53 events over the expected 232 events was observed.

This raises the exciting question: where is this excess coming from?

One explanation could be a new, previously unconsidered source of background, caused by the presence of tiny amounts of tritium in the XENON1T detector. Tritium, a radioactive isotope of hydrogen, spontaneously decays by emitting an electron with an energy similar to what was observed. Only a few tritium atoms for every 10 25 (10,000,000,000,000,000,000,000,000!) xenon atoms would be needed to explain the excess. Currently, there are no independent measurements that can confirm or disprove the presence of tritium at that level in the detector, so a definitive answer to this explanation is not yet possible.

More excitingly, another explanation could be the existence of a new particle. In fact, the excess observed has an energy spectrum similar to that expected from axions produced in the Sun. Axions are hypothetical particles that were proposed to preserve a time-reversal symmetry of the nuclear force, and the Sun may be a strong source of them. While these solar axions are not dark matter candidates, their detection would mark the first observation of a well-motivated but never observed class of new particles, with a large impact on our understanding of fundamental physics, but also on astrophysical phenomena. Moreover, axions produced in the early universe could also be the source of dark matter.

Alternatively, the excess could also be due to neutrinos, trillions of which pass through your body, unhindered, every second. One explanation could be that the magnetic moment (a property of all particles) of neutrinos is larger than its value in the Standard Model of elementary particles. This would be a strong hint to some other new physics needed to explain it.

Of the three explanations considered by the XENON collaboration, the observed excess is most consistent with a solar axion signal. In statistical terms, the solar axion hypothesis has a significance of 3.5 sigma, meaning that there is about a 2/10,000 chance that the observed excess is due to a random fluctuation rather than a signal. While this significance is fairly high, it is not large enough to conclude that axions exist. The significance of both the tritium and neutrino magnetic moment hypotheses corresponds to 3.2 sigma, meaning that they are also consistent with the data.

XENON1T is now upgrading to its next phase–XENONnT–with an active xenon mass three times larger and a background that is expected to be lower than that of XENON1T. With better data from XENONnT, the XENON collaboration is confident it will soon find out whether this excess is a mere statistical fluke, a background contaminant, or something far more exciting: a new particle or interaction that goes beyond known physics.

Observing the Rarest Decay Process Ever Measured

[Press Release April 2019 – for immediate release. Paper published in Nature and preprint on the arxiv.]

The universe is almost 14 billion years old. An inconceivable length of time by human standards – yet compared to some physical processes, it is but a moment. There are radioactive nuclei that wdecay on much longer time scales. Using our XENON1T detector at the INFN Gran Sasso National Laboratory, we were able to observe the decay of Xenon-124 atomic nuclei for the first time.

The half-life of a process is the time after which half of the radioactive nuclei present in a sample have decayed away. The half-life measured for Xenon-124 is about one trillion times longer than the age of the universe. This makes the observed radioactive decay, the so-called double electron capture of Xenon-124, the rarest process ever seen happening in a detector. “The fact that we managed to observe this process directly demonstrates how powerful our detection method actually is – also for signals which are not from dark matter,” says Prof. Christian Weinheimer from the University of Münster (Germany) whose group lead the study. In addition, the new result provides information for further investigations on neutrinos, the lightest of all elementary particles whose nature is still not fully understood. XENON1T is a joint experimental project of about 160 scientists from Europe, the US and the Middle East. The results were published in the science journal “Nature”.

A sensitive dark matter detector

The Gran Sasso Laboratory of the National Institute for Nuclear Physics (INFN) in Italy, where scientists are currently searching for dark matter particles is located about 1,400 meters beneath the Gran Sasso massif, well protected from cosmic rays which can produce false signals. Theoretical considerations predict that dark matter should very rarely “collide” with the atoms of the detector. This assumption is fundamental to the working principle of the XENON1T detector: its central part consists of a cylindrical tank of about one meter in length filled with 3,200 kilograms of liquid xenon at a temperature of –95° C. When a dark matter particle interacts with a xenon atom, it transfers energy to the atomic nucleus which subsequently excites other xenon atoms. This leads to the emission of faint signals of ultraviolet light which are detected by means of sensitive light sensors located in the upper and lower parts of the cylinder. The same sensors also detect a minute amount of electrical charge which is released by the collision process.

In double electron capture, two electrons and two protons simultaneously convert into two neutrons and two neutrinos. X-rays are emitted when the electron vacancies are subsequently filled.

The new study shows that the XENON1T detector is also able to measure other rare physical phenomena, such as double electron capture. To understand this process, one should know that an atomic nucleus normally consists of positively charged protons and neutral neutrons, which are surrounded by several atomic shells occupied by negatively charged electrons. Xenon-124, for example, has 54 protons and 70 neutrons. In double electron capture, two protons in the nucleus simultaneously “catch” two electrons from the innermost atomic shell, transform into two neutrons, and emit two neutrinos. The other atomic electrons reorganize themselves to fill in the two holes in the innermost shell. The energy released in this process is carried away by X-rays and so-called Auger electrons. However, these signals are very hard to detect, as double electron capture is a very rare process which is hidden by signals from the omnipresent natural radioactivity.

The measurement

The peak at 64keV from double electron capture of Xenon-124 is clearly visible in this plot of the background spectrum from XENON1T.

This is how the XENON collaboration succeeded with this measurement: The X-rays from the double electron capture in the liquid xenon produced an initial light signal as well as free electrons. The electrons were moved towards the gas-filled upper part of the detector where they generated a second light signal. The time difference between the two signals corresponds to the time it takes the electrons to reach the top of the detector. Scientists used this interval and the information provided by the sensors measuring the signals to reconstruct the position of the double electron capture. The energy released in the decay was derived from the strength of the two signals. All signals from the detector were recorded over a period of more than one year, however, without looking at them at all as the experiment was conducted in a “blind” fashion. This means that the scientists could not access the data in the energy region of interest until the analysis was finalized to ensure that personal expectations did not skew the outcome of the study. Thanks to the detailed understanding of all relevant sources of background signals it became clear that 126 observed events in the data were indeed caused by the double electron capture of Xenon-124.

Using this first-ever measurement, the physicists calculated the enormously long half-life of 1.8×1022 years for the process. This is the slowest process ever measured directly. It is known that the atom Tellurium-128 decays with an even longer half-life, however, its decay was never observed directly and the half-life was inferred indirectly from another process. The new results show how well the XENON1T detector can detect rare processes and reject background signals. While two neutrinos are emitted in the double electron capture process, scientists can now also search for the so-called neutrino-less double electron capture which could shed light on important questions regarding the nature of neutrinos.

Status and outlook

XENON1T acquired data from 2016 until December 2018 when it was switched off. The scientists are currently upgrading the experiment for the new “XENONnT” phase which will feature a three times larger active detector mass. Together with a reduced background level this will boost the detector’s sensitivity by an order of magnitude.

 

XENON1T probes deeper into Dark Matter WIMPs, with 1300 kg of cold Xe atoms

Results from XENON1T, the world’s largest and most sensitive detector dedicated to a direct search for Dark Matter in the form of Weakly Interacting Massive Particles (WIMPs), are reported today (Monday, 28th May) by the spokesperson, Prof. Elena Aprile of Columbia University, in a seminar at the hosting laboratory, the INFN Laboratori Nazionali del Gran Sasso (LNGS), in Italy. The international collaboration of more than 165 researchers from 27 institutions, has successfully operated XENON1T, collecting an unprecedentedly large exposure of about 1 tonne x year with a 3D imaging liquid xenon time projection chamber. The data are consistent with the expectation from background, and place the most stringent limit on spin-independent interactions of WIMPs with ordinary matter for a WIMP mass higher than 6 GeV/c². The sensitivity achieved with XENON1T is almost four orders of magnitude better than that of XENON10, the first detector of the XENON Dark Matter project, which has been hosted at LNGS since 2005. Steadily increasing the fiducial target mass from the initial 5 kg to the current 1300 kg, while simultaneously decreasing the background rate by a factor 5000, the XENON collaboration has continued to be at the forefront of Dark Matter direct detection, probing deeper into the WIMP parameter space.

Shown are the limits on WIMP interactions, derived from one year of XENON1T data. The inset compares our limit and sensitivity with the limit and sensitivities of previous experiments.

WIMPs are a class of Dark Matter candidates which are being frantically searched with experiments at the Large Hadron Collider, in space, and on Earth. Even though about a billion WIMPs are expected to cross a surface of one square meter per second on Earth, they are extremely difficult to detect. Results from XENON1T show that WIMPs, if they indeed comprise the Dark Matter in our galaxy, will result in a rare signal, so rare that even the largest detector built so far can not see it directly. XENON1T is a cylindrical detector of approximately one meter height and diameter, filled with liquid xenon at -95°C, with a density three times that of water. In XENON1T, the signature of a WIMP interaction with xenon atoms is a tiny flash of scintillation light and a handful of ionization electrons, which themselves are turned into flashes of light. Both light signals are simultaneously recorded with ultra-sensitive photodetectors, giving the energy and 3D spatial information on an event-by-event basis.

In developing this unique type of detector to search for a rare WIMP signal, many challenges had to be overcome; first and foremost the reduction of the overwhelmingly large background from many sources, from radioactivity to cosmic rays. Today, XENON1T is the largest Dark Matter experiment with the lowest background ever measured, counting a mere 630 events in one year and one tonne of xenon in the energy region of interest for a WIMP search. The search results, submitted to Physical Review Letters, are based on 1300 kg out of the total 2000 kg active xenon target and 279 days of data, making it the first WIMP search with a noble liquid target exposure of 1.0 tonne x year. Only two background events were expected in the innermost, cleanest region of the detector, but none were detected, setting the most stringent limit on WIMPs with masses above 6 GeV/c² to date. XENON1T continues to acquire high quality data and the search will continue until it will be upgraded with a larger mass detector, being developed by the collaboration. With another factor of four increase in fiducial target mass, and ten times less background rate, XENONnT will be ready in 2019 for a new exploration of particle Dark Matter at a level of sensitivity nobody imagined when the project started in 2002.

XMASS Members join XENON

XENON1T is the largest and most sensitive WIMP dark matter detector to date, recording scientific data in the Italian Laboratori Nazionali del Gran Sasso (LNGS). Our collaboration recently grew larger again and now has more than 160 members from 27 institutions. As of December 1st, 2017, key members of the Japanese XMASS collaboration have officially joined XENON and will contribute to the realization of the upcoming XENONnT.

Participants of our collaboration meeting early 2018 in Florence, including our newest colleagues from the Japanese XMASS collaboration.

XMASS is a single-phase liquid xenon experiment in the Kamioka mine, the Japanese underground laboratory hosting the Nobel-prize winning SuperKamiokande experiment. Researchers come from the University of Tokyo (groups of Prof. Shigetaka Moriyama and Prof. Kai Martens), Nagoya University (group of Prof. Yoshitaka Itow) and Kobe University (group of Prof. Kentaro Miuchi). XMASS will continue to record data until the end of this year, in line with the planned start of XENONnT.

XENONnT is an upgrade phase to the currently running XENON1T experiment. With a target mass three times larger than XENON1T, and a considerably reduced background, XENONnT will explore WIMP-nucleon interactions with a ten-fold higher sensitivity than XENON1T. The Japanese groups bring expertise in LXe detector technologies and low background experiments relevant to the XENON Dark Matter program. We are excited about our newest collaborators from Japan as we continue to move forward with the XENON program at LNGS.

Water Tank Filling

We started to fill the water tank:

In this view from the top, the cryostat with the actual detector is visible on the left. Photomultiplier tubes of the water Cherenkov muon veto are seen at the bottom and side of the water tank, to the right of the image.

In this view from the top, the cryostat with the actual detector is visible on the left. Photomultiplier tubes of the water Cherenkov muon veto are seen at the bottom and side of the water tank, to the right of the image.

The water acts as a passive shielding against external radioactivity. In addition, using the photomultipliers that can be seen towards the right of the picture, the water acts as an active muon detector. Muons may induce events in the xenon detector that may mimic dark matter signals. We therefore turn a blind eye (“veto”) for a short time whenever a muon travels through the water tank.

XENON1T First Light

Today XENON1T has seen its first light:

firstlightThis is literally the first event recorded by the detector in that is is a single photon that was detected by one of the photomultipliers and recorded by the whole XENON1T data acquisition setup. What you can see from the picture is that our noise is indeed very low compared to the smallest possible signal – that of a single photon! And this is even without any fine-tuning of our electronics yet.

The detector is still empty and we are checking the photomultipliers one by one before making first background measurements. Filling with liquid xenon will happen as soon as those tests are concluded successfully.

Gran Sasso Lab on Google Street View

The Gran Sasso laboratory that hosts the XENON1T experiment is the largest underground laboratory in the world. More than a dozen different experiments make use of the low background from cosmic radiation that you get when you go more than a mile deep underground. You can virtually walk around the lab using the Street View from Google Maps.

The lab also offers public tours, just get in touch with them directly if you want to walk around in person.