Author Archives: Daniel Mayani

First Signals in the XENON1T Time Projection Chamber

While the functionality of each of the 248 PMTs had been tested during the different commissioning stages of the XENON1T dark matter detector, the signal detection with both PMT arrays and the full data acquisition system remained to be tested. For this, and for the LED_event1_cutsubsequent calibration of the time projection chamber (TPC), an LED illumination system has been set up with 3 individual channels, each branching out into six optical fibers distributed in a circumference around the TPC. Light shining through the fibers is collected by the PMTs, whose output signals are then magnified by a factor 10 with operational amplifiers and digitized with fast analog-to-digital converters.

The figure on the right shows the first detection of blue LED light by the XENON1T PMT arrays. A time delay between the LEDs has been set, resulting in the three peaks seen in the top panel, which correspond to the combined waveforms of all PMTs. The bottom panel shows the signals detected by each individual channel.

On March 17th, the TPC was filled with warm xenon gas for the first time, allowing to acquire the first scintillation signals with the detector. For these measurements, only the PMTs have been biased and no electric drift field was applied. The figure below shows the detection of an event occurring between the so-called screening mesh in front of the top PMT array and the photosensors (see the January 19 post for details on the TPC structure) and constitutes the first detection of an S2-like signal in XENON1T. The left panels show the hit pattern on the top and bottom arrays, while the right top and bottom panels display the summed waveform and the individual PMT hits, respectively.

first_s2