XMASS Members join XENON

XENON1T is the largest and most sensitive WIMP dark matter detector to date, recording scientific data in the Italian Laboratori Nazionali del Gran Sasso (LNGS). Our collaboration recently grew larger again and now has more than 160 members from 27 institutions. As of December 1st, 2017, key members of the Japanese XMASS collaboration have officially joined XENON and will contribute to the realization of the upcoming XENONnT.

Participants of our collaboration meeting early 2018 in Florence, including our newest colleagues from the Japanese XMASS collaboration.

XMASS is a single-phase liquid xenon experiment in the Kamioka mine, the Japanese underground laboratory hosting the Nobel-prize winning SuperKamiokande experiment. Researchers come from the University of Tokyo (groups of Prof. Shigetaka Moriyama and Prof. Kai Martens), Nagoya University (group of Prof. Yoshitaka Itow) and Kobe University (group of Prof. Kentaro Miuchi). XMASS will continue to record data until the end of this year, in line with the planned start of XENONnT.

XENONnT is an upgrade phase to the currently running XENON1T experiment. With a target mass three times larger than XENON1T, and a considerably reduced background, XENONnT will explore WIMP-nucleon interactions with a ten-fold higher sensitivity than XENON1T. The Japanese groups bring expertise in LXe detector technologies and low background experiments relevant to the XENON Dark Matter program. We are excited about our newest collaborators from Japan as we continue to move forward with the XENON program at LNGS.

Search for bosonic super-WIMP interactions with the XENON100 experiment

While the microscopic nature of dark matter in the Universe is largely unknown, the simplest assumption which can explain all existing observations is that it is made of a new, as yet undiscovered particle. Leading examples are weakly interacting massive particles (WIMPs), axions or axion-like particles (ALPs), and sterile neutrinos. WIMPs with masses in the GeV range, as well as axions/ALPs are examples for cold dark matter while sterile neutrinos with masses at the keV-scale are an example for warm dark matter. Cold dark matter particles were nonrelativistic at the time of their decoupling from the rest of the particles in the early universe. In contrast, warm dark matter particles remain relativistic for longer, retain a larger velocity dispersion, and thus more easily free-stream out from small-scale perturbations. Astrophysical and cosmological observations constrain the mass of warm dark matter to be larger than about 3keV/c2, with a more recent lower limit from Lyman-alpha forest data being 5.3keV/c2. Another example for warm dark matter particles are bosonic super-WIMPs. These particles, with masses at the keV-scale, could couple electromagnetically to standard model particles via the axioelectric effect, which is an analogous process to the photoelectric effect, and thus be detected in direct detection experiments.

The limit derived from the XENON100 experiment on the coupling of SuperWIMPs.

We searched for vector and pseudo-scalar bosonic super-WIMPs with the XENON100 experiment. The super-WIMPs can be absorbed in liquid xenon and the expected signature is a monoenergetic peak at the super-WIMP’s rest mass. A profile likelihood analysis of data with an exposure of 224.6 live days × 34kg showed no evidence for a signal above the expected background. We thus obtained new upper limits in the (8 − 125) keV/c2 mass range, excluding couplings to electrons with coupling constants of gae > 3 × 10−13 for pseudo-scalar super-WIMPs and α′/α > 2 × 10−28 for vector super-WIMPs, respectively. We expect to improve upon these results with the XENON1T detector, which operates a larger mass of liquid xenon with reduced backgrounds. Our results were published in Physical Review D 96, 122002 (2017) and are of course also available at the arxiv.

Intrinsic backgrounds from Rn and Kr in the XENON100 experiment

XENON1T is currently the largest liquid xenon detector in the search for dark matter. To fully exploit the capabilities of the ton-scale target mass, a thorough understanding of radioactive background sources is required. In this paper we use the full data of the main science runs of the XENON100 experiment that were taken over a period of about 4 years to asses the target-intrinsic background sources radon (Rn-222), thoron (Rn-220) and krypton (Kr-85). We derive distributions of the individual radionuclides inside the detector (see Figure below) and quantify their abundances during the main three science runs. We find good agreement with external measurements of radon emanation and krypton concentrations, and report an observed reduction in concentrations of radon daughters that we attribute to the plating-out of charged ions on the negatively biased cathode.

The preprint of the full study is available on arXiv:1708.03617.

Figure: Spatial distributions of the various radon populations identified in XENON100.

Search for WIMP Inelastic Scattering Off Xenon Nuclei With XENON100

Most direct detection searches focus on elastic scattering of galactic dark matter particles off nuclei, where the keV-scale nuclear recoil energy is to be detected. In this work, the alternative process of inelastic scattering is explored, where a WIMP-nucleus scattering induces a transition to a low-lying excited nuclear state. The experimental signature is a nuclear recoil detected together with the prompt de-excitation photon. We consider the scattering of dark matter particle off 129Xe isotope, which has an abundance of 26.4\% in natural xenon, and when excited to it lowest-lying 3/2+ state above the ground state it emits a 36.9 keV photon. This electromagnetic nuclear decay has a half-life of 0.97 ns.

The WIMP inelastic scattering  is complementary to spin-dependent, elastic scattering, and dominates the integrated rates above 10 keV of deposited energy. In addition, in case of a positive signal, the observation of inelastic scattering would provide a clear indication of the spin-dependent nature of the fundamental interaction.

The search is performed using XENON100 Run-II science data, which corresponds to an exposure of 34×224.6 kg×days. No evidence of dark matter is found and a limit on dark matter inelastic interaction cross section is set. Our result, shown in the Figure, is the most stringent limit for the spin-dependent inelastic scattering to date, and set the stage for a sensitive search of inelastic WIMP-nucleus scattering in running or upcoming liquid xenon experiments such as XENON1T, XENONnT, LZ, and DARWIN.

Full details may be found in this article: Phys. Rev. D 96, 022008 and on the arxiv.

SAIP 2017: Latest results from XENON1T

At the 62nd annual conference of the South African Institute of Physics (SAIP), hosted by the University of Stellenbosch, Jacques Pienaar presented the results of our first science run with XENON1T. While a dark matter particle candidate still eludes us, we are able to demonstrate that for the first time a tonne-scale liquid Xenon dark matter detector is not only operating, but doing so very successfully.

The work done up to this point has given us a thorough understanding of the electronic and nuclear recoil response in our detector, which we can use to look for dark matter candidates. This of course is just the start. In this first result we had an exposure of only 0.1 ton.years, but our design goal is 2 ton.years. Therefore much work still lies ahead to probe for dark matter, and indeed we have more than 3 times as much data available already to push the bounds of our knowledge further. Stay tuned!

A few pictures of the TPC

Modulation results from Xenon100 presented at PASCOS 2017 conference.

On Tuesday 20th of June, we presented our latest results on Electronic Recoil Modulations with 4 years of Xenon100 data at the PASCOS 2017 conference held in Madrid. After a short introduction, by M.L. Benabderrahmane, to the dark matter modulation as a signal, the main results have been presented, namely the test statistics of unbinned profile likelihood to search for the modulation period using three different sets of data. The first set contains the single scatter events in the energy range 2-5.8keV, the second set contains Multiple scatter events in the same energy range and the last one contains single scatters in the energy range 6-20keV. The last two samples are used as a sideband. The results of the likelihood gives a period of 431 days which is different from the one observed by the DAMA/LIBRA collaboration. Our single scatter modulation at 431 days has a global significance below 2sigma. The local test statistics for one year period gives a 1.8sigma. Similarity of the spectra between the two control samples and the signal sample disfavors the possibility for a modulation due to Dark Matter interaction.

Talk at WIN2017: First Results from the XENON1T experiment

This talk by Sara Diglio (slides) was presented at the WIN2017 conference at the University of California in  Irvine, from June 19 – 24, 2017.

ReStoX is an original cryogenic system designed for experiments that make use of high quantities of liquid xenon. It allows to store the total amount of xenon in gaseous, liquid or solid phase and to fill it into the detector vessel under high purity conditions. The system is crucial in case of emergencies that might require a fast recovering of the whole xenon present in the detector. ReStoX is currently being used by the XENON1T experiment and a future upgrade for XENONnT has already started.

The traditional approach for WIMP nucleus interaction studies in direct detection experiment is to consider just two types of interactions, the spin independent (SI) and the spin dependent (SD) ones. However, these are not the only types of interactions possible. In recent years, a non-relativistic effective field theory approach has been studied. In this framework, 14 new interaction operators arise. These operators include the SI and SD ones among others. Some of these new operators are momentum dependent and predict a non-exponential event rate as function of energy, in contrast to the traditional expected signals. Moreover, some of these operators predict energy recoils above the upper threshold of the standard analyses done in direct detection experiments. For XENON100, this threshold is 43keV (nuclear recoil).

In this analysis, we extend the upper energy threshold up to ~240 keV. This value is dictated by low statistics in calibration data above it. We divide our signal region into two regimes, low recoil energy, on which we perform the same “standard” analysis done for the SI and SD cases, and high recoil energy, which is the main focus of this work.

Summary of regions of interest, backgrounds, and observed data. ER calibration data, namely 60Co and 232Th data, is shown as light cyan dots. NR calibration data (241AmBe) is shown as light red dots. Dark matter search data is shown as black dots. The red line is the threshold between the low and high energy channels. The lines in blue are the bands. For the low energy channel these are operator and mass dependent, but are shown here for a 50 GeV/c^2 WIMP using the O1 operator. For the high-energy region, the nine analysis bins are presented also in blue lines.

We find that our data is compatible with background expectations. Using a binned profile likelihood, we thus produce 90% CL exclusion limits for both elastic scattering and inelastic WIMP scattering for each operator. Find the preprint of this study on the arxiv.

The XENON100 limits (90% CLS) on isoscalar dimensionless coupling for all elastic scattering EFT operators. The
limits are indicated in solid black. The expected sensitivity is shown in green and yellow (1σ and 2σ respectively). Limits from CDMS-II Si, CDMS-II Ge, and SuperCDMS [30] are presented as blue asterisks, green triangles, and orange rectangles, respectively.