Data for reproducing the limits of: “Constraining the spin-dependent WIMP-nucleon interaction with XENON1T”

To add our limits to your own figures you can use the official data points from the XENON1T collaboration, as we believe that data should be shared. They can be both found here and on the ArXiv page (‘Download Other formats’). The format is csv and the following files are included:
– x1t_n_only_limit.csv (Fig 2.)  x1t_n_only_limit
– x1t_p_only_limit.csv (Fig 3.)  x1t_p_only_limit
– x1t_isoscalar_mediator_mass_95CL_limit.csv (Fig 4.)  x1t_isoscalar_mediator_mass_95CL_limit
The files for Fig 2 and 3 contain the mass points between 6 and 1.000 GeV and their corresponding 90% CL limits, with cross sections in cm^2. The values for the plus and minus 1 and 2 sigma bands at those mass points are also included.
The file for Fig 4 contain the mass points between 6 and 10.000 GeV and their corresponding cross sections at 95% CL in cm^2. Please contact us if you have any questions regarding this data.

On March 8, 2019, Shigetaka Moriyama presented the status of the XENONnT experiment at the international symposium on “Revealing the history of the Universe with underground particle and nuclear research” in Sendai, Japan. The symposium is held by a Japanese research community working on underground experiments and developing low background techniques. Its members are interested in the physics goals of XENONnT as well as its radon reduction technique and will enhance the experiment with Super-Kamiokande’s water Cherenkov technology developed in Kamioka, Japan, for the SK-Gd project. Super-Kamiokande developed this technology to measure the diffuse relic neutrino flux from past supernovae.

At the Sendai meeting, this community is summarizing its achievements over last five years and aims to secure new funding for the next five years by expanding its activity through internationalization and the inclusion of new physics topics such as history of stars, galaxies, and the origin of the heavy elements in the Universe.

Its HP is here and the slides are available here.

Outline the XENONnT Computing Scheme at the 2nd Rucio Community Workshop in Oslo

Oslo welcomed all 66 participants of the second Rucio Community Workshop with pleasant weather and a venue which offered an astonishing view about the capital of Norway.
The opensource and contribution model of the Rucio data management tool captures more and more attention from numerous fields. Therefore, 21 communities reported this year about the implementation of Rucio in their current data workflows, discussed with the Rucio developing team possible improvements and chatted among each other during the coffee breaks to learn from others experiences. Among the various communities were presentations given by the DUNE experiment, Belle-2 and LSST. The XENON Dark Matter Collaboration presented the computing scheme of the upcoming XENONnT experiment. Two keynote talks from Richard Hughes-Jones (University of Maryland) and Gundmund Høst (NeIC) highlighted the concepts of the upcoming generation of academic networks and the Nordic e-Infrastructure Collaboration.

After the successful XENON1T stage with two major science runs, a world-leading limit for spin-indepenent Dark Matter interactions with nucleons and further publications, the XENON1T experiment stopped data taking in December 2018. We aim for two major updates for the successor stage of XENONnT: a larger time projection chamber (TPC) which holds ~8,000 kg of liquid xenon with 496 PMTs for signal readout and an additional neutron veto detector based on Gadolinium doped water in our water tank. That requires upgrades in our current data management and processing scheme, which was presented last year at the first Rucio Community Workshop. Fundamental change is the new data processor STRAX which allows us much faster data processing. Based on the recorded raw data, the final data product will be available at distinct intermediate processing stages which depend on each other. Therefore, we stop using our “classical” data scheme of raw data, processed data and minitrees, and instead aim for a more flexible data structure. Nevertheless, all stages of the data are distributed with Rucio to connected grid computing facilities. STRAX will be able to process data from the TPC, the MuonVeto and the NeutronVeto together to allow coincident analysis.

The data flow of the XENONnT experiment

The data flow of the XENONnT experiment. A first set data is processed already at the LNGS. All data kinds are distributed with Rucio to the analysts.

Reprocessing campaigns are planed ahead with HTCondor and DAGMan jobs at EGI and OSG similar to the setup of XENON1T. Due to the faster data processor, it becomes necessary to outline a well-established read and write routine with Rucio to guarantee quick data access.
Another major update in the XENONnT computing scheme becomes the tape backup location. Because of the increased number of disks and tape allocations in the Rucio catalogue, we will abandon the Rucio independent tape backup in Stockholm and use dedicated Rucio storage elements for storing the raw data. The XENON1T experiment collected ~780 TB of (raw) data during its life time which are all managed by Rucio. The XENON Collaboration is looking forward to continuing this success story with XENONnT

Modeling and statistical analysis of the XENON1T data

On May 31st 2018, XENON1T released the result of a search for dark matter interacting with xenon atoms using an exposure of 1 tonne-year. Papers presenting the scientific results are written to be brief, and communicate the most important information to the scientific community. Therefore, many details of the instrument, reconstruction of events and analysis work by the entire collaboration must be left out of the science papers. XENON1T has previously published a paper focusing on the operation of the detector itself. A new paper by XENON1T now goes into the details of the analysis of the XENON1T data, and another one, on the event reconstruction and calibration, is being prepared.

XENON1T detects the scintillation light and ionization electrons that energy depositions in the two tonne liquid xenon target produce. In addition to WIMPs, different background sources can produce an S1+S2 signal. The expected S1,S2 distribution may change depending on whether the energy deposition happens by a recoil on an electron of the xenon atom or the nucleus. This is one of the main methods XENON uses to discriminate against backgrounds, since WIMPs, which scatter on the xenon nucleus, have a mean S2 lower than 99.7% of the dominant background component, which is made up of scatters on electrons.

Modelling how an electronic or nuclear recoil will look like in the detector is crucial both to know the shape of a WIMP signal, and to model the backgrounds well. XENON1T uses a comprehensive fit to multiple calibration sources to constrain the distributions of backgrounds and signals in the analysis space; S1, S2 and the radius from the center axis of the detector.
Some background components are harder to model directly, and are estimated by using sidebands or other data samples. In the XENON1T analysis, coincidences between unrelated, lone S1 and S2 events were modeled this way, in addition to the surface background– events occurring close to or at the detector wall.

Models of various backgrounds and the expected WIMP signal in two of the parameters extracted from each even, scintillation S1 and ionization S2 signals.

The models of each background and the signal, for two separate science runs, are put together in a likelihood, which is a mathematical function of the WIMP signal strength as well as nuisance parameters. These are unknowns that could change the analysis, such as the true expectation value for each background component. The likelihood also contains multiple terms representing measurements of nuisance parameter, which constrain them when the likelihood is fitted to the data collected by XENON1T.

The value of the likelihood evaluated at a specific signal strength has a random distribution which is estimated using simulated realizations of the experimental outcome. The final statistical limits are computed by comparing the likelihood computed on the actual data with the distributions found from the simulations: 

Likelihood as function of the signal strength (measured by the WIMP-nucleon cross-section)
The gray area shows likelihoods that corresponds to a 90% exclusion. The confidence interval– the region of signal strength compatible with the observed data– is the region where the likelihood lies below the gray band.

The models and tools used in the XENON1T spin-independent analysis are also used to explore alternative models of dark matter, such as spin-independent interactions and scatterings between WIMPs and pions, with more to come!


XENON1T at Lake Louise

Physics meets winter sports at the Lake Louise Winter Institute, a particle physics conference held annually in the beautiful Canadian Rockies. On February 12, 2019, Evan Shockley from University of Chicago presented at the conference on behalf of the XENON collaboration. The talk focused on the latest, world-leading WIMP results, and included a status update on XENON1T and its imminent upgrade, XENONnT. The talk is available here.

XENONnT will feature a larger detector and even lower background than XENON1T, making it ~10 times more sensitive to interactions from dark matter and other rare processes. With installation coming later this year, it’s an exciting time for the XENON collaboration and the field of dark matter research!


Constraining the spin-dependent WIMP-nucleon interaction with XENON1T

Since we don’t know how dark matter interacts with more familiar particles, we have to break up our search for weakly interacting massive particles (WIMPs) in terms of their possible interactions with xenon nuclei. While many complex interactions are possible, we generally start with two simple cases: WIMP-nucleus interactions that don’t depend on the nuclear spin, and those that do. XENON1T set a world-leading constraint on the former, “spin-independent” interaction in 2018. Today, we released our first results constraining the latter, “spin-dependent” interaction. The results are shown in the following figure:

The spin-dependent WIMP-nucleon interaction contains a range of possible cases, so experiments typically consider two extreme ones: the case where WIMPs only scatter off protons, and the case where they only scatter off neutrons. Most of the spin in xenon is carried by neutrons, so xenon experiments are better at constraining the neutron-only case. These results set the most stringent limit on this case, using the same data and procedure as the spin-independent result. We also tried out a new method of combining our constraints with complementary searches at particle accelerators, following the example of PICO-60. An open-access pre-print version of the paper is available on the arXiv.

The first limits on spin-independent WIMP-pion interactions

XENON1T was built to observe the recoil of xenon-atoms, which may be caused by the interaction of a Weakly Interacting Massive Particle (WIMP) as it passes through the detector. A recoiling xenon atom produces scintillation light and ionization that XENON1T detects as an S1 and S2 signal, which carry information of the recoil type, energy and position in the detector. The first results of the XENON1T were published on the spin-independent WIMP-nucleon interaction, which is expected to dominate the WIMP scattering rate. However, models of WIMPs exist where this contribution would be suppressed or vanish. XENON has therefore performed searches for alternative WIMP-recoil spectra, such as the one expected if the scattering depends on the nucleon spins.

A careful accounting of all the possible WIMP-nucleon interactions showed that WIMPs can also interact with pions— subatomic particles that contribute to the strong force that binds atoms together. The figure illustrates a WIMP (χ) scattering via a mediator line on a pion (π) exchanged between a proton and a neutron in the xenon nucleus. The xenon atom recoils from the interaction, which can be observed with our detector. Similarly to the spin-independent recoil, the wimp-pion interaction happens in a way where the WIMP scatters coherently, off the entire xenon atom together. 

A WIMP scattering on a pion exchanged within the xenon nucleus

The analysis was performed with the same tools as the main XENON1T spin-independent WIMP search, and 1 tonne-years of data. No significant evidence for a signal was observed, so we set the first limits on the spin-independent WIMP-pion interaction strength. An open access pre-print of the paper can be found on the arxiv.

A Larger Cleanroom for a Larger XENONnT

Assembly of XENONnT Cleanroom at LNGS. Foto: Roberto Corrieri/XENON

The upcoming XENONnT detector, the next phase in our dark matter program, will have a dark matter target about three times larger than that of XENON1T. This means that all dimensions of the instruments are about 50% larger and thus require more space for the cleaning of the detector components and for detector assembly. For this reason, the class ISO-5/6 XENON cleanroom is currently being moved to a new above-ground space at LNGS, where it is re-built with a 50% increased footprint and a partially increased height.

The last action seen by the “old” cleanroom before its decommissioning were very successful tests of the TPC electrodes for XENONnT.

XENON1T at the annual meeting of the Swiss Physical Society, 2018

Two members of the University of Zurich group gave talks on XENON1T at the annual meeting of the Swiss Physical Society in Lausanne, Switzerland. Chiara Capelli presented the latest news from the experiment and in particular the recently presented limit on spin-independent WIMP-nucleon cross-section, while Adam Brown spoke about the ongoing work searching for the inelastic scattering of WIMPs.

One of the key slides from Chiara’s talk is below. In the top-right you can see the WIMP-search data pre-unblinding, and in the bottom-right the efficiency for detecting nuclear recoils which happen in our fiducial volume. In the full talk, which is available here, she also presented the final limit and then gave a update on the preparations for the detector upgrade to XENONnT which are ongoing at the University of Zurich.

Adam’s talk focussed instead on an alternative possibility of searching for WIMPs via their inelastic scattering off xenon nuclei. During the interaction the nucleus is excited, and so the usual nuclear recoil signal would be observed in coincidence with the 39.6 keV gamma ray from the de-excitation of the nucleus. One of the attractions of this search channel, which is however less sensitive than elastic scattering, is that it distinguishes between spin-dependent and spin-independent WIMP interactions: a spin-dependent interaction is needed to change the nuclear spin state during its excitation. Again, the full talk is available online here.

XENON1T Result covered by CERN Ccourier

XENON1T results from a 1 ton-year dark matter exposure.

Our latest dark matter results from XENON1T, the most sensitive search for WIMPs with an unprecedented liquid xenon exposure of 1 ton-years and a world-record low background level is featured in the July/August 2018 edition of the CERN Courier, the International Journal of High-Energy Physics. Read the full article here.